8.4-Interpretação do conceito de intervalo de confiança.

(Qualidade da amostra, nível de confiança, tamanho da amostra para os intervalos da média e da proporção.)

Dado um intervalo de confiança]a, b[, sabemos que:

a amplitude é dada por A= b-a

a margem de erro é metade da amplitude, isto é,

$$\boldsymbol{\varepsilon} = \frac{b-a}{2}$$

Também sabemos que a **amplitude** é igual ao dobro da margem de erro, $A = 2 \times \varepsilon$, e que a **margem de erro** é igual a metade da amplitude $\varepsilon = A/2$

Qualidade da amostra.

Devemos garantir que a <u>amostra é representativa</u> da população. Se uma amostra for enviesada, as conclusões que tiramos serão pouco credíveis.

Por **exemplo**, para estudarmos a média das alturas dos alunos de uma escola, se apenas analisássemos alunos que jogam basquetebol, essa amostra seria pouco adequada, pois os basquetebolistas costumam ser mais altos do que a média.

Grau de confiança

Já vimos que, <u>quanto maior é o nível de confiança pretendido, maior é a amplitude do intervalo</u>. Por outro lado, é importante termos um valor alto para o grau de confiança. No entanto, quando este é demasiado próximo de 100%, pode acontecer que o intervalo tenha uma amplitude muito grande, e a informação fornecida seja pouco útil.

Por *exemplo*, um intervalo com 99.9% de confiança para a proporção de pessoas que pretende votar no partido "A", nas próximas eleições, que seja do tipo]10%, 80%[, é demasiado vago para ser útil!... entre 10% e 80% é uma amplitude demasiado grande, e esta previsão perde o seu interesse.

Dimensão da amostra.

Já vimos que, aumentando o tamanho da amostra, a margem de erro diminui e a precisão aumenta

Exemplo Dimensão da amostra para a estimação do valor médio.

Pretendemos estimar o peso médio de um determinado tipo fruto. Sabemos que o desvio padrão dos pesos é 20 gramas. Queremos que a margem de erro não ultrapasse as 5 gramas. Qual deverá ser o tamanho da amostra ideal para estimar o peso desse tipo de fruto, com uma confiança de 95%?

Resolução:

Usamos a fórmula da margem de erro:

$$\varepsilon = Z \frac{\sigma}{\sqrt{n}}$$

Igualamos a 5 e vamos resolver a equação até obtermos o valor de n:

(Tente compreender todas as passagens desta resolução.)

$$\varepsilon = 5 \Leftrightarrow 1.95 \times \frac{20}{\sqrt{n}} = 5 \Leftrightarrow 5\sqrt{n} = 1.96 \times 20 \Leftrightarrow \sqrt{n} = \frac{1.96 \times 20}{5} \Leftrightarrow$$
$$\Leftrightarrow n = \left(\frac{1.96 \times 20}{5}\right)^2 \Leftrightarrow n = 61.4656$$

A partir de n=62, a margem de erro será inferior a 5 gramas.

R: O tamanho ideal para a amostra é 62.

Nota: Para estimarmos o tamanho da amostra, para o qual a margem de erro é inferior a um determinado valor, começamos por igualar a expressão da margem de erro ao valor pretendido, e depois resolvemos a equação até obtermos o valor de n.

No caso da média, no final da equação, obteremos uma expressão do tipo:

$$n = \left(\frac{Z.\,\sigma}{\varepsilon}\right)^2$$

Se aplicássemos diretamente a fórmula, podíamos obter:

$$n = \left(\frac{1.96 \times 20}{5}\right)^2 \Leftrightarrow n = 61.4656$$

Nota: Devemos usar sempre os cálculos a partir da margem de erro. Estas fórmulas serão apenas para verificar.

Exemplo

Pretendemos avaliar os conhecimentos em Matemática de uma população de alunos de uma escola. Para isso foi feito um teste de conhecimentos gerais desta disciplina e analisados os resultados numa escala de zero a vinte valores. Foi escolhida uma amostra, na qual sabemos que 5 alunos obtiveram 10 valores, 4 alunos obtiveram 11 valores, 7 alunos obtiveram 12 valores, 15 alunos obtiveram 14 valores, 5 alunos obtiveram 15 valores e 2 alunos obtiveram 16 valores.

Suponha que pretende obter um intervalo de 90% de confiança para a média, mas com uma amplitude inferior a 0,12. Qual deverá ser a dimensão da nova amostra? Apresente todos os cálculos e justificações.

Resolução:

Começamos por lançar na calculadora gráfica as listas:

Lista1	Lista2	Depois obtemos: média amostral: 13.026
10	5	Desvio padrão amostral: 1.808
11	4	
12	7	
14	15	
15	5	
16	2	

A= 0.12 logo ϵ = 0.06 e Z= 1.64

$$1.645 \times \frac{1.808}{\sqrt{n}} = 0.06 \Leftrightarrow \sqrt{n} = \frac{1.645 \times 1.808}{0.06} \Leftrightarrow n = \left(\frac{1.645 \times 1.808}{0.06}\right)^2 \Leftrightarrow n = 2457.118$$

Resposta: a partir de 2458

Exemplo

Numa amostra aleatória de n saquetas de açúcar retiradas de uma caixa, verificou-se que, aproximadamente 62% das saquetas tinha 8 ou mais gramas.

Determine o número mínimo de saquetas de açúcar, n, necessário para que o intervalo de 95% de confiança para a proporção de saquetas com 8 ou mais gramas, na caixa, tenha uma amplitude de aproximadamente 0.10, admitindo que a amostra tem dimensão superior a 30.

Caso proceda a arredondamentos nos cálculos intermédios, conserve, no mínimo, quatro casas decimais.

Resolução:

$$\int_{0.05}^{2} = 0.62 \quad \neq = 1.960 \quad A = 0.1 \quad \mathcal{E} = 0.05$$

$$1.96 \quad \sqrt{\frac{0.62 \times 0.38}{m}} = 0.05 \Leftrightarrow \sqrt{m} = \frac{1.96}{0.05} \times \sqrt{0.62 \times 0.38}$$

$$\Leftrightarrow m = \left(\frac{1.96}{0.05}\right)^{2} \times 0.62 \times 0.38 \Leftrightarrow m \approx 362.032$$

$$m = 362 \quad (a 363)$$

Nota: do mesmo modo, podemos estimar a **dimensão da amostra** para o caso do intervalo de confiança para a **proporção**:

Exemplo - Dimensão da amostra para a estimação da proporção.

Qual deverá ser a dimensão da amostra a recolher para estimar a proporção de pessoas do sexo feminino que assistem a jogos do desposto D, com um nível de confiança de 95% e uma margem de erro de 2%, sabendo que a proporção de mulheres que assistem habitualmente é de aproximadamente 35%?

Resolução:

Sabemos que Z=1.96 e que $\hat{p} = 0.35 \ logo \ 1 - \hat{p} = 0.65$. ε =2%=0.02

$$\varepsilon = Z\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

$$\varepsilon = 0.02 \Leftrightarrow 1.96 \times \sqrt{\frac{0.35 \times 0.65}{n}} = 0.02 \Leftrightarrow$$

$$\Leftrightarrow 1.96 \times \frac{\sqrt{0.35 \times 0.65}}{\sqrt{n}} = 0.02 \Leftrightarrow 1.96 \times \sqrt{0.35 \times 0.65} = 0.02\sqrt{n} \Leftrightarrow$$

$$\Leftrightarrow \sqrt{n} = \frac{1.96}{0.02} \times \sqrt{0.35 \times 0.65} \Leftrightarrow$$

$$\Leftrightarrow n = \left(\frac{1.96}{0.02}\right)^2 \times 0.35 \times 0.65 \Leftrightarrow$$

 $\Leftrightarrow n \approx 2185$

Resposta: aproximadamente 2185.

Nota: Para estimarmos o tamanho da amostra, para o qual a margem de erro é inferior a um determinado valor, começamos por igualar a expressão da margem de erro ao valor pretendido, e depois resolvemos a equação até obtermos o valor de n.

No caso da proporção, no final da equação, obteremos uma expressão do tipo:

$$n = \left(\frac{Z}{\varepsilon}\right)^2 \cdot \widehat{p} \cdot (1 - \widehat{p})$$

Diretamente seria:

$$n = \left(\frac{1.96}{0.02}\right)^2 \times 0.35 \times 0.65$$

Nota: Devemos usar sempre os cálculos a partir da margem de erro. Estas fórmulas serão apenas para verificar.

Exemplo

Lançou-se um dado com as faces numeradas de 1 a 6 ao acaso 200 vezes, tendo-se obtido os resultados que constam da tabela:

Face	1	2	3	4	5	6
Frequência	40	30	35	28	32	35
Absoluta						

Quantas vezes deveria lançar o dado caso pretendesse obter um intervalo com 95% de confiança para a proporção de faces com mais de 4 de pintas, com uma margem de erro menor que 1 por cento? Apresente todos os cálculos.

Resolução:

Mais do que 4: 32+35= 67
$$\hat{p}$$
 =67/200 = 0.335 Z=1.96

$$\epsilon = 0.01$$

$$1.96\sqrt{\frac{0.335 \times 0.665}{n}} = 0.01 \Leftrightarrow \sqrt{n} = \frac{1.96}{0.01} \times \sqrt{0.335 \times 0.665} \Leftrightarrow$$

$$n = \left(\frac{1.96}{0.01}\right)^2 \times 0.335 \times 0.665 \iff n = 8558.12$$

Resposta: A partir de 8559.