8.3-Intervalo de confiança para a proporção.

(Estimativa pontual, distribuição de amostragem, Fórmula do IC, amplitude, margem de erro, calculadora gráfica...)

Estimativa pontual de proporção.

$$\widehat{p}=\frac{f}{n}$$

A **proporção** é o número de elementos favoráveis à nossa condição, a dividir pelo número total de elementos da amostra.

Para n≥ 30, temos:

$$\widehat{p} \sim N\left(p; \sqrt{\frac{p(1-p)}{n}}\right)$$

Nota: O desvio padrão de amostragem também se designa" erro padrão"

Intervalos de confiança para a proporção.

intervalo de confiança para a proporção.

$$\left|\widehat{p}-Z\sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}};\widehat{p}+Z\sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}}\right|$$

- \hat{p} Representa a proporção amostral.
- n é o número de elementos da amostra
- **Z** é o valor relacionado com a confiança. Os valores usuais para Z são os que constam da tabela seguinte:

Nível de confiança	90%	95%	99%
Valor de Z	1,645	1,960	2,576

$$oldsymbol{arepsilon} = Z \sqrt{rac{\hat{p}(1-\hat{p})}{n}} \quad ext{\'e} \ ext{a margem de erro}.$$

A diferença entre os dois extremos do intervalo é a amplitude do intervalo(A).

A amplitude é igual ao dobro da margem de erro, $A = 2 \times \varepsilon$, logo, a margem de erro é igual a metade da amplitude $\varepsilon = A/2$

Nota: À semelhança do que acontecia para o intervalo do valor médio, também podemos verificar que nas **proporções**, **quanto maior for o nível de confiança, maior é a amplitude do intervalo**.

Nota: À semelhança do que acontecia para o intervalo do valor médio, também podemos verificar que nas proporções, **quanto maior for a dimensão da amostra, menor é a amplitude do intervalo de confiança**.