8.1-Noções gerais.

(Introdução, amostragem, parâmetro, estimador, estimativa, distribuição de amostragem e Teorema do limite central.(TLC)).

Introdução.

Na **inferência estatística**, analisamos e interpretamos amostras com o objetivo de tirar conclusões acerca da população de onde se extraiu a amostra.

População- é o conjunto de todos os elementos em estudo.

Amostra- é um subconjunto finito da população.

Nota: A amostra deverá ser representativa da população, caso contrário, não poderemos tirar conclusões fiáveis. Quando uma amostra não é representativa, dizemos que é **enviesada**.

Métodos de amostragem probabilística- Qualquer elemento da população tem alguma probabilidade de fazer parte da amostra.

- 1- Amostragem <u>aleatória simples</u> de n elementos.
- 2- Amostragem aleatória de n elementos com reposição.
- 3- Amostragem <u>aleatória sistemática</u>- criamos uma regra para extrair os números.
- **4- Amostragem** <u>aleatória estratificada</u>- Escolhemos a amostra respeitando alguns estratos da população que acreditamos influenciar as respostas ao inquérito.
- **5** Amostragem <u>aleatória por conglomerados</u>. Quando analisamos grupos de indivíduos que correspondam ao modo como se agrupam naturalmente na população em que estão inseridos.

Parâmetro e estatística. Estimativa pontual

O **parâmetro** é referente à população. A estatítica ou **estimador** ou **estimativa** é referente à amostra.

Símbolos a utilizar:

Dimensão da população N / Tamanho da amostra: n

Valor médio populacional: μ / média amostral: \overline{X} ou \overline{x}

Proporção populacional: **p** / Proporção amostral: $\widehat{\boldsymbol{p}}$

Desvio padrão populacional: σ / Desvio padrão amostral: S

Nota: por vezes, usamos um acento circunflexo (^) para indicar que se refere à amostra.

Um **Parâmetro, heta** carateriza a população. Uma estatística ou estimador $\widehat{m{ heta}}$ carateriza a amostra.

Nota: Parâmetro, estimador, estimativa.

No caso da média, temos, como vimos μ Parâmetro (populacional)

- \overline{X} **Estimado**r(fórmula ou processo para estimar). O estimador é uma variável aleatória, pois os seus valores variam de amostra para amostra.
- \bar{x} Estimativa- resultado concreto de uma amostra particular.

Estimação do valor médio.

$$E(\overline{X}) = \mu$$

Dizemos que \overline{X} é um **estimador centrado** ou cêntrico ou não enviesado, pois o seu valor médio é igual ao parâmetro que pretendemos estimar.

O <u>desvio padrão da distribuição de amostragem da média</u>, isto é, o desvio padrão das médias amostrais pode ser dado por

$$\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$$
 também se designa erro padrão.

Teorema do Limite Central.

Seja X uma população com valor médio μ e desvio padrão σ , da qual se recolhem amostras de dimensão n.

Então, se $n \geq 30$, a distribuição de amostragem da média \bar{X} pode ser aproximada a uma distribuição normal com valor médio μ e desvio padrão $\frac{\sigma}{\sqrt{n}}$,

isto é, para
$$n \ge 30$$

$$\overline{X} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$$

Nota: este teorema diz-nos que as médias amostrais, apesar de variarem de amostra para amostra, tendem a concentrar-se em torno do valor médio da população à medida que a dimensão das amostras aumenta, uma vez que o desvio-padrão $\frac{\sigma}{\sqrt{n}}$ diminui.