Resoluções — Caderno de Exercícios

Prova-modelo de exame

pág. 90

1.1.1 Contagem do número de pontos de cada árvore:

Harmonia: $637 \times 3 + 990 \times 2 + 825 \times 1 = 4716$ pontos Partilha: $825 \times 3 + 637 \times 2 + 990 \times 1 = 4739$ pontos Alegria: $990 \times 3 + 825 \times 2 + 637 \times 1 = 5257$ pontos

Vence a árvore Alegria.

1.1.2 Contagem do número de pontos de cada árvore:

Partilha: $(825+637)\times 2+990\times 1=4739$ pontos Alegria: $990\times 2+(825+637)\times 1=5257$ pontos O resultado não se manteria, venceria a árvore Partilha.

pág. 91

1.2.1

Grupo	Número de alunos	Quotas padrão	Quotas arredondadas
Harmonia	90	6,0	6
Alegria	70	4,7	4
Partilha	110	7,3	7
	270		17

Nº de representantes 18

Divisor padrão: 15

1.2.2

Grupo	Número de alunos	Quotas padrão	Quotas arredondadas	Quotas modificadas	Quotas modificadas arredondadas
Harmonia	90	6,0	6	6,43	6
Alegria	70	4,7	4	5,00	5
Partilha	110	7,3	7	7,86	7
	270		17		18

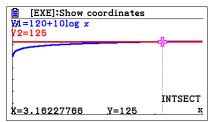
№ de representantes 18

Divisor padrão:	15
Divisor modificado:	14

Conclusão: o grupo Harmonia fica com 6 lugares, o grupo Alegria fica com 5 lugares e o grupo Partilha fica com 7 lugares.

pág. 92

2.


Bens	Herdeiros			Atribuição
Della	Mariana	Pedro	Susana	temporária
Apartamento	140 000	120 000	150 000	150 000
Automóvel	25 000	35 000	30 000	35 000
Mobiliário	18 000	13 000	12 000	18 000
Total	183 000	168 000	192 000	
Valor justo	61 000	56 000	64 000	
Valor dos bens	18 000	35 000	150 000	
Valor justo - Valor bens	43 000	21 000	-86 000	
Montante disponível				22 000
Distribuição monetária	7333,33	7333,33	7333,33	
Montante final (€)	50 333,33	28 333,33	-78 666,67	
Bens atribuídos	Mobiliário	Automóvel	Apartamento	

pág. 93

3.1
$$N(0,001) = 120 + 10 \log 0,001 = 120 - 30 = 90$$
 decibéis

3.2
$$140 = 120 + 10 \log I \Leftrightarrow \log I = 2 \Leftrightarrow I = 10^2 = 100 \text{ W/m}^2$$

3.3 Recorrendo à calculadora gráfica, obtemos:

A intensidade do som emitido é cerca de 3,16 W/m².

pág. 94

4. Consideremos os acontecimentos:

A: "participar pela primeira vez no evento"

B: "avançar para a fase final"

Sabe-se que $P(A) = \frac{1}{5}$, $P(B \mid \bar{A}) = 60\%$ e $P(B \mid A) = 70\%$.

Sabe-se que 20% dos jogadores participaram pela primeira vez no evento, logo 80% já tinham participado anteriormente: I - c)

$$P(B \mid A) = 70\% \Leftrightarrow \frac{P(A \cap B)}{P(A)} = 0.7 \Leftrightarrow P(A \cap B) = 0.7 \times 0.2 \Leftrightarrow P(A \cap B) = 0.14 : \text{II - a}$$

$$P(B | \bar{A}) = 0.6 : \text{III - c}$$

$$P(B \mid \bar{A}) = 60\% \Leftrightarrow \frac{P(B \cap \bar{A})}{P(\bar{A})} = 0.6 \Leftrightarrow P(B \cap \bar{A}) = 0.6 \times 0.8 \Leftrightarrow P(B \cap \bar{A}) = 0.48$$

$$P(B) = P(B \cap A) + P(B \cap \bar{A}) = 0.14 + 0.48 = 0.62 : IV - a$$

Resumidamente: I - c); II - a); III - c); IV - a)

5. Consideremos os acontecimentos:

A: "ser rapaz"

B: "ter automóvel"

Sabe-se que P(A) = 65%, $P(B \mid A) = 30\%$ e $P(B \mid \bar{A}) = 18\%$.

Pretende-se calcular $P(\bar{A} \mid B)$.

$$P(B \mid A) = 0.30 \Leftrightarrow \frac{P(B \cap A)}{P(A)} = 0.30 \Leftrightarrow P(B \cap A) = 0.30 \times 0.65 \Leftrightarrow P(B \cap A) = 0.195$$

$$P(B \mid \bar{A}) = 0.18 \Leftrightarrow \frac{P(B \cap \bar{A})}{P(\bar{A})} = 0.18 \Leftrightarrow P(B \cap \bar{A}) = 0.18 \times 0.35 \Leftrightarrow P(B \cap \bar{A}) = 0.063$$

$$P(B) = P(B \cap A) + P(B \cap \bar{A}) = 0.195 + 0.063 = 0.258$$

$$P(\bar{A} \mid B) = \frac{P(\bar{A} \cap B)}{P(B)} = \frac{0,063}{0,258} \approx 24,42\%$$

6.1 Se ele não acertou na 1ª tentativa, então restam duas chaves e uma delas é a correta.

Assim, a probabilidade de acertar é $P(\text{abrir na } 2^{\underline{a}}|\text{falhou na } 1^{\underline{a}}) = \frac{1}{2} = 0.5$.

6.2.1 Os valores que a variável pode tomar são 1, 2 e 3.

- Acertar à 1ª tentativa: $P(X = 1) = \frac{1}{3}$
- Falhar à 1ª tentativa e acertar à 2ª: $P(X=2) = \frac{2}{3} \times \frac{1}{2} = \frac{1}{3}$
- Falhar à 1^a e à 2^a tentativa: $P(X = 3) = \frac{2}{3} \times \frac{1}{2} = \frac{1}{3}$

A distribuição de probabilidades da variável aleatória X é dada por:

x_i	1	2	3
$P(X=x_i)$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$

6.2.2 Recorrendo às capacidades da calculadora, tem-se que E(X) = 2.0 e $\sigma = 0.8$.

pág. 95

7.
$$n = 100$$
 , $\bar{x} = 40$, $s = 2.5$

O intervalo de confiança a 95% para o valor médio é dado por:

$$\left]40 - 1,96 \times \frac{2,5}{\sqrt{100}};40 + 1,96 \times \frac{2,5}{\sqrt{100}}\right[=]39,51;40,49[$$

8. O intervalo de confiança é $\]250,270[$, logo a margem de erro é $\ \frac{270-250}{2}=10$. Opção (B)