Resoluções — Manual

III. Introdução à inferência estatística

Prova-modelo de exame

pág. 157

1.1 Utilizando o algoritmo descrito, obtemos (método de Hondt):

Divisores	Р	Q	R	S
1	327	251	122	110
2	158,5	125,5	61	55
3	105,7	83,7	40,7	36,7
4	79,3	62,8	30,5	27,5
5	63,4	50,2	24,4	22

Distribuição - Lista P: 5 lugares; Lista Q: 3 lugares; Lista R: 1 lugar; Lista S: 1 lugar.

1.2 Utilizando o algoritmo descrito, obtemos (método de Sainte-Laguë):

Divisores	Р	Q	R	S
1	327	251	122	110
3	105,7	83,7	40,7	36,7
5	63,4	50,2	24,4	22
7	45,3	35,9	17,4	15,7

Distribuição - Lista P: 4 lugares; Lista Q: 3 lugares; Lista R: 2 lugares; Lista S: 1 lugar. Este método é mais favorável à Lista R, que consegue mais um lugar.

pág. 158

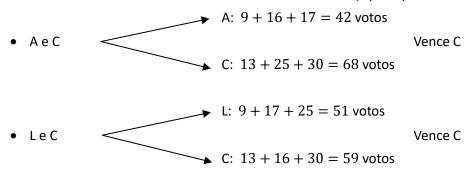
2.1 Opção (D)

Total de clientes:
$$9+17+25+13+30+16=111$$

$$\frac{30+13}{110}\times 100\approx 39{,}1\%$$

Preferência	Número de votos					
riciciencia	9	13	16	17	25	30
1ª	Α	С	Α	L	L	С
2ª	L	L	С	Α	С	Α
3 <u>a</u>	С	Α	L	С	Α	L

2.3 Temos de determinar o vencedor de cada confronto direto (a pares):



O candidato C, bolo de chocolate, vence todos os confrontos diretos com os restantes candidatos, logo é o vencedor.

pág. 159

3. Partilha temporária:

- Luana cadeirão e purificador (25 + 45 = 70 pontos)
- Saúl estante e secretária (25 + 30 = 55 pontos)

Temos de transferir bens, ou parte, da Luana para o Saúl.

- cadeirão: $\frac{25}{5} = 5$
- purificador: $\frac{45}{40} = 1,125 \rightarrow \text{menor quociente}$

O purificador será o bem a ser usado no ajuste da partilha.

A equação que traduz o equilíbrio é

$$25 + 45x = 25 + 30 + 40 \times (1 - x) \Leftrightarrow x \approx 0.824$$

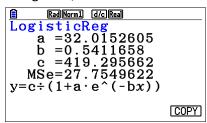
O número de pontos de cada sócio será:

- Luana: $25 + 45 \times 0.824 \approx 62$ pontos
- Saúl: $25 + 30 + 40 \times (1 0.824) \approx 62$ pontos

Conclusão: a Luana fica com o cadeirão e 82,4% do purificador e o Saúl fica com a estante, a secretária e 17,6% do purificador.

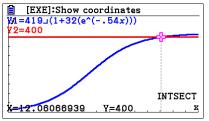
pág. 160

4.1 Com auxílio da calculadora gráfica, obtemos:



$$N(t) = \frac{419}{1 + 32e^{-0.54t}}$$

4.2 Queremos resolver a equação: $N(t) = 400 \Leftrightarrow \frac{419}{1+32e^{-0.54x}} = 400$



 $t \approx 12,06$, ou seja, serão necessários 12 anos.

5. A distribuição de probabilidades é dada por:

x_i	0	50	200
$P(X=x_i)$	0,85	0,10	0,05

$$E(X) = 0 \times 0.85 + 50 \times 0.10 + 200 \times 0.05 = 15$$

pág. 161

6. Consideremos os acontecimentos:

A: "participa em atividades curriculares"

B: "está inscrito no Clube de Ciências"

Sabe-se que P(A) = 0.8 e P(B|A) = 0.5.

$$P(B|A) = 0.5 \Leftrightarrow \frac{P(A \cap B)}{P(B)} = 0.5 \Leftrightarrow P(A \cap B) = 0.5 \times 0.8 \Leftrightarrow P(A \cap B) = 0.4$$

Opção (C)

7.1 Consideremos os acontecimentos:

A: "comprar uma peça de decoração"

B: "comprar uma peça de vestuário"

Sabe-se que P(A) = 0.4, P(B) = 0.6 e $P(A \cap B) = 0.2$.

$$P(B|A) = \frac{P(B \cap A)}{P(A)} = \frac{0.2}{0.4} = 0.5$$

7.2 Vimos que P(B|A)=0.5 . Como P(B)=0.6 , temos que $P(B|A)\neq P(B)$, logo $A\in B$ não são acontecimentos independentes.

8. $X \sim N(50, 10)$

$$P(X < 40) = 0.1587$$

Opção (A)

9.1 $X \sim N(170, 8)$

$$P(162 < X < 178) = P(\mu - \sigma < X < \mu + \sigma) \approx 68,27\%$$

9.2 $P(X \le x) = 0.25$ e $z_{0.25} = -0.674$

$$x = \mu + z \times \sigma = 170 + (-0.674) \times 8 \approx 164.61$$

A altura máxima de um aluno para participar nesse estudo, arredondada às unidades, é 165 cm.

10. n = 50 , $\mu = 3.5$ e $\sigma = 1$

O intervalo de confiança a 95% para μ é:

$$\left[3,5-1,96\times\frac{1}{\sqrt{50}};\ 3,5+1,96\times\frac{1}{\sqrt{50}}\right] = \left[3,22;3,78\right]$$

pág. 162

11.
$$\hat{p} = \frac{350}{700} = 0.5$$

A amplitude do intervalo de confiança é 0,0621752.

Como a amplitude é o dobro da margem de erro, vem que $\, \varepsilon = \frac{A}{2} = \frac{0.0621752}{2} = 0.0310876 \, . \,$

Ora:

$$\varepsilon=z\sqrt{rac{\hat{p}(1-\hat{p})}{n}}$$
 , ou seja, $0.0310876=z\sqrt{rac{0.5 imes0.5}{700}}$ \Leftrightarrow $z=1.645$

pelo que o nível de confiança é 90%.