II. Modelos de probabilidade

Capítulo 3 Modelos de probabilidade

Preparado?

pág. 82

1. A, B e F.

2.1.1 Para definirmos o espaço de resultados, podemos elaborar uma tabela de dupla entrada.

	2	5	10	50
2	(2, 2)	(2, 5)	(2, 10)	(2, 50)
5	(5, 2)	(5, 5)	(5, 10)	(5, 50)
10	(10, 2)	(10, 5)	(10, 10)	(10, 50)
50	(50, 2)	(50, 5)	(50, 10)	(50, 50)

$$S = \{(2, 2), (2, 5), (2, 10), (2, 50), (5, 2), (5, 5), (5, 10), (5, 50), (10, 2), (10, 5), (10, 10), (10, 50), (50, 2), (50, 5), (50, 10), (50, 50)\}$$

2.1.2
$$A = \{(2, 2), (5, 5), (10, 10), (50, 50)\}$$

2.1.3
$$B = \{(2, 5), (2, 10), (2, 50), (5, 10), (5, 50), (10, 50)\}$$

2.1.4
$$C = \{(5, 10)\}$$

2.1.5
$$D = \{(2, 2), (2, 5), (2, 10), (5, 2), (5, 5), (5, 10), (10, 2), (10, 5)\}$$

2.2.1
$$A \cup B = \{(2, 2), (2, 5), (2, 10), (2, 50), (5, 5), (5, 10), (5, 50), (10, 10), (10, 50), (50, 50)\}$$

2.2.2
$$A \cap \bar{C} = A = \{(2, 2), (5, 5), (10, 10), (50, 50)\}$$

2.2.3
$$B - C = \{(2, 5), (2, 10), (2, 50), (5, 50), (10, 50)\}$$

2.2.4
$$A \cup (\bar{B} \cap C) = A \cup \emptyset = A = \{(2, 2), (5, 5), (10, 10), (50, 50)\}$$

3.1 Para obtermos três faces comuns ao lançar quatro vezes uma moeda equilibrada, teremos as seguintes hipóteses:

 $C \rightarrow$ Face comum $N \rightarrow$ Face nacional

CCCN, CCNC, CNCC, NCCC

Logo, P(obter exatamente três faces comuns) =
$$\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times 4 = \frac{1}{4}$$

3.2 Para obtermos duas faces comuns, temos várias hipóteses. Usando o acontecimento contrário, facilita a resolução do exercício porque temos menos casos a considerar.

P(pelo menos duas faces comuns) = 1 - P(no máximo uma face comum) =

= 1 - P(nenhuma face comum) - P(uma face comum) =

$$=1-\frac{1}{2}\times\frac{1}{2}\times\frac{1}{2}\times\frac{1}{2}\times\frac{1}{2}-\frac{1}{2}\times\frac{1}{2}\times\frac{1}{2}\times\frac{1}{2}\times4=1-\frac{1}{16}-\frac{1}{4}=\frac{11}{16}$$

4.
$$P(A) = \frac{8}{20} \times \frac{8}{20} = \frac{4}{25} = 0.16$$

$$P(B) = \frac{12}{20} \times \frac{12}{20} = \frac{9}{25} = 0.36$$

$$P(C) = \frac{8}{20} \times \frac{12}{20} \times 2 = \frac{12}{25} = 0.48$$

O Crisóstomo tem maior probabilidade de ganhar.

pág. 83

5. Consideremos os acontecimentos:

M: "ter micro-ondas"

R: "ter robot de cozinha"

Sabe-se que: P(M) = 20%, P(R) = 30% e $P(M \cap R) = 10\%$.

5.1
$$P(M \cup R) = P(M) + P(R) - P(M \cap R) =$$

$$= 0.2 + 0.3 - 0.1 = 0.4 = 40\%$$

5.2
$$P(\overline{M} \cap \overline{R}) = P(\overline{M \cup R}) = 1 - P(M \cup R) = 1 - 0.4 = 0.6 = 60\%$$

5.3
$$P(M \cap \bar{R}) = P(\bar{M} \cap R) = P(M) - P(M \cap R) + P(R) - P(M \cap R) = 0.2 - 0.1 + 0.3 - 0.1 = 0.3 = 30\%$$

6. Para que o problema seja resolvido, a Miquelina não pode falhar e o Faustino também não. Consideremos os acontecimentos:

M: "Miguelina acertar"

F: "Faustino acertar"

Sabe-se que:

$$P(M) = \frac{1}{3}$$
 logo $P(\overline{M}) = \frac{2}{3}$

$$P(F) = \frac{1}{4} \quad \log P(\overline{F}) = \frac{3}{4}$$

$$P(\text{resolvido}) = 1 - P(\overline{M} \cap \overline{F}) = 1 - \frac{2}{3} \times \frac{3}{4} = 1 - \frac{6}{12} = \frac{1}{2}$$

7. Consideremos os acontecimentos:

A: "o dado ter as faces numeradas de 1 a 6"

B: "os números serem pares nas duas jogadas"

$$P(A \mid B) = \frac{P(A) \times P(B \mid A)}{P(B)}$$

Sabe-se que $P(A) = \frac{1}{2}$, pois existem dois dados com as faces numeradas de 1 a 6 em quatro possíveis.

P(B|A) é a probabilidade de saírem dois números pares, considerando que foi escolhido um dado com as faces numeradas de 1 a 6.

$$P(B \mid A) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$$

P(B) é a probabilidade de saírem dois números pares independentemente do dado escolhido. Sendo:

D: "escolher o dado com 25% dos números ímpares"

E: "escolher o dado que só tem números ímpares"

$$P(B) = P(A) \times P(B \mid A) + P(\overline{D}) \times P(B \mid \overline{D}) + P(\overline{E}) \times P(B \mid \overline{E}) =$$

$$= \frac{1}{2} \times \left(\frac{1}{2}\right)^2 + \frac{1}{4} \times \left(\frac{3}{4}\right)^2 + \frac{1}{4} \times 1^2 = \frac{33}{64}$$

$$P(A \mid B) = \frac{P(A) \times P(B \mid A)}{P(B)} = \frac{\frac{1}{2} \times \frac{1}{4}}{\frac{33}{64}} = \frac{8}{33}$$

8.1 Nos dois jogos, podemos ter os seguintes casos:

1.º jogo	2.º jogo	Pontuação		
V	V	3 + 3 = 6		
V	E	3 + 2 = 5		
V	D	3 + 0 = 3		
Е	V	2 + 3 = 5		
E	E	2+2 = 4		
E	D	2 + 0 = 2		
D	V	0+3=3		
D	Е	0+2=2		
D	D	0 + 0 = 0		

Portanto, a variável X pode tomar os valores 0, 2, 3, 4, 5 e 6.

$$P(X = 0) = \frac{1}{3} \times \frac{1}{3} = \frac{1}{9}$$

$$P(X = 2) = \frac{1}{3} \times \frac{1}{3} \times 2 = \frac{2}{9}$$
(E, D), (D, E)
$$P(X = 3) = \frac{1}{3} \times \frac{1}{3} \times 2 = \frac{2}{9}$$
(V, D), (D, V)
$$P(X = 4) = \frac{1}{3} \times \frac{1}{3} = \frac{1}{9}$$
(E, E)
$$P(X = 5) = \frac{1}{3} \times \frac{1}{3} \times 2 = \frac{2}{9}$$
(V, E), (E, V)
$$P(X = 6) = \frac{1}{3} \times \frac{1}{3} = \frac{1}{9}$$

(V, V)

Sendo assim, a tabela de distribuição de probabilidade da variável aleatória X é:

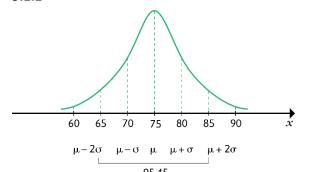
x_i	0	2	3	4	5	6
$P(X=x_i)$	1_	2	2	1_	2	1_
	9	9	9	9	9	9

8.2.
$$E(X) = 0 \times \frac{1}{9} + 2 \times \frac{2}{9} + 3 \times \frac{2}{9} + 4 \times \frac{1}{9} + 5 \times \frac{2}{9} + 6 \times \frac{1}{9} = \frac{10}{3}$$

 $Var(X) = \left(0 - \frac{10}{3}\right)^2 \times \frac{1}{9} + \left(2 - \frac{10}{3}\right)^2 \times \frac{2}{9} + \dots + \left(6 - \frac{10}{3}\right)^2 \times \frac{1}{9} = \frac{28}{9}$

9.
$$\mu = 75 \text{ e } \sigma = 5$$

9.1.1



$$P(X > 75) = 50\%$$

9.1.2
$$P(X < 60) = P(X < \mu - 3\sigma) = \frac{100\% - 99,73\%}{2} = 0.135\%$$

9.1.3
$$P(65 < X < 90) = P(\mu - 2\sigma < X < \mu + 3\sigma) =$$

= 95,45% + $\frac{99,73 - 95,45}{2} = 97,59\%$

9.2
$$P(X > 90) = 1 - P(X \le 90) \approx 0.135\%$$

 $0.135\% \times 30 = 0.0405$

Não existem alunos nestas condições.