I. Modelo matemáticos

Capítulo 2 Modelos populacionais

Exercícios de aplicação

pág. 136

1.1
$$10\ 000 + 11 \times 100 = 11\ 100$$
 pares de calças

1.2
$$10\ 000 + 17 \times 100 = 11\ 700$$
 pares de calças

2.1 50 páginas:
$$3 + 0.04 \times 50 = 5$$
 €

100 páginas:
$$3 + 0.04 \times 100 = 7$$
 €

2.2
$$C(n) = 3 + 0.04n$$

3. Altitude do nível do mar: 0 metros

$$1100 - 800 = 300 \text{ hPa}$$

$$\frac{1}{10} = \frac{300}{a} \Longleftrightarrow a = 300$$

O alpinista encontra-se a uma altitude de 3000 metros.

4.

$$u_n = 5 + 3(n-1)$$
 $n \rightarrow \text{semanas}$

$$42 = 5 + 3n - 3 \Leftrightarrow 3n = 40 \Leftrightarrow n = 13,(3)$$

Serão necessárias 14 semanas.

5.1 37 000 + 200
$$\times$$
 18 = 40 600 toneladas

5.2
$$Q(N) = 37\ 000 + 200N$$

5.3
$$Q(N) = 65\,000 \Leftrightarrow 37\,000 + 200N = 65\,000 \Leftrightarrow N = 140$$
 meses

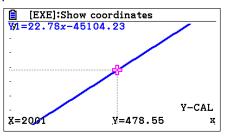
$$140 \div 12 = 11\frac{2}{3}$$
 anos , isto é, 11 anos e 8 meses.

A capacidade deverá ser atingida em agosto de 2034.

6. Com auxílio da calculadora gráfica, obtemos os valores pretendidos:

RadNorm1 d/c/Real LinearReg(
$$ax+b$$
)

 $a = 22.7775644$
 $b = -45104.234$
 $r = 0.99859293$
 $r^2 = 0.99718784$
 $MSe = 123.906261$
 $y = ax+b$



ou, analiticamente, $y = 22,78 \times 2001 - 45104,23 \approx 479 €$.

pág. 137

7. Entre 2021 e 2041, temos duas décadas:

$$P_{2041} = 10343066 \times \left(1 - \frac{2,1}{100}\right)^2 \approx 9913218$$
 habitantes

8. 100 anos \rightarrow 10 décadas

$$P_{2121} = 250744 \times \left(1 - \frac{6.4}{100}\right)^{10} \approx 129416 \text{ habitantes}$$

A população da Madeira diminuiria para cerca de metade da atual (aproximadamente 52% da atual).

9.
$$C(12) = 0.5 \times 3^{12} = 625720.5 \approx 265.7 \text{ m}$$

10. Valor(5) =
$$28800 \times 0.85^5 \approx 12778,71$$
€

11.

1º termo: 1 (4°)

2º termo: 4 (4¹)

3º termo: 16 (4²)

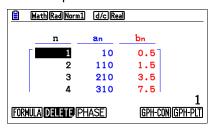
 $u_n=4^{n-1}$

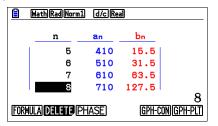
 $1 + 4 + 16 + 64 + ... + 4^9 = 349525$ pessoas

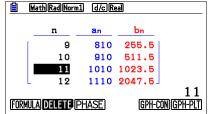
12.1

Mês	Valor da mesada (€)	
	Tomé	Joana
1º	10	0,5
2º	110	1,5
3₀	210	3,5
4º	310	7,5
5º	410	15,5

12.2 Também podemos obter os valores pretendidos recorrendo à calculadora:







Ao fim de 11 meses, a mesada da Joana ultrapassa a do irmão.

13.
$$D(n) = 2^n$$

 $D(8) = 2^8 = 256$ seres

14.1
$$2000 \times 1,03 = 2060 €$$

14.2
$$2000 \times 1,015^2 = 2060,45$$
€

14.3 2000 ×
$$\left(1 + \frac{0,03}{365}\right)^{365}$$
 ≈ 2060,91 €

14.4 2000 ×
$$\left(1 + \frac{0.03}{365 \times 24}\right)^{8760}$$
 ≈ 2060,91 €

14.5 2000 ×
$$e^{0.03 \times 1}$$
 ≈ 2060,91 €

15.1
$$P(6) = 1 + 3 \times e^{0.1 \times 6} \approx 6,466356401$$

Será de aproximadamente 6466 elementos.

15.2
$$P(t) > 5 \Leftrightarrow t \approx 2,88$$
 meses (calculadora)

Verificado através do gráfico ($t \approx 2,876820$).

16.
$$4000 = N_0 \times (1 + 0.055)^4 \iff N_0 = \frac{4000}{1.0554} \approx 3228.87$$

A população inicial era de aproximadamente 3229 indivíduos.

17.1
$$P(10) = 167\ 646 \Leftrightarrow P_0 \times e^{0.02 \times 10} = 167\ 646 \Leftrightarrow P_0 = \frac{167\ 646}{e^{0.2}} \Leftrightarrow P_0 \approx 137\ 256.9358$$
 Existiam cerca de 137 257 melgas.

17.2
$$P(25) = 137\ 257 \times e^{0.02 \times 25} \approx 226\ 298.5355$$

Ao fim de 25 dias, existirão cerca de 226 229 melgas.

pág. 138

$$\mathbf{18.1} \begin{cases} N_0 \times e^{k \times 0} = 1 \\ N_0 \times e^{k \times 20} = 2 \end{cases} \Longleftrightarrow \begin{cases} N_0 = 1 \\ e^{k \times 20} = 2 \end{cases} \Longleftrightarrow \begin{cases} N_0 = 1 \\ k = \frac{\ln 2}{20} \end{cases}$$

18.2
$$N(30) = 1 \times e^{\frac{\ln 2}{20} \times 30} \approx 2828$$
 bactérias

18.3
$$N(t) = 5 \Leftrightarrow e^{\frac{\ln 2}{20} \times t} = 5 \Leftrightarrow t = \frac{20}{\ln 2} \times \ln 5 \Leftrightarrow t \approx 46,4386 \text{ min } \approx 46 \text{ min } e \text{ 26 s}$$

19.1 Com auxílio da calculadora gráfica, obtemos:

$$P(t) = 5,594e^{0,066t}$$

19.2.1 2030 $\rightarrow t = 13$ décadas após 1900

$$P(13) = 5.594e^{0.066 \times 13} \approx 13.193$$
 milhões de habitantes

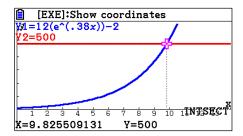
19.2.2
$$P(t) = 20 \Leftrightarrow 5,594e^{0,066t} = 20 \Leftrightarrow t = \frac{\ln \frac{20}{5,594}}{0,066} \Leftrightarrow t \approx 19,3 \text{ décadas ou 193 anos, ou seja, no ano 2093.}$$

20.1 13 horas $\rightarrow t = 5$ e 14 horas $\rightarrow t = 6$

$$P(6) - P(5) = 12e^{0.38 \times 6} - 2 - (12e^{0.38 \times 5} - 2) \approx 37.09$$

Realizou cerca de 37 novas partilhas.

20.2



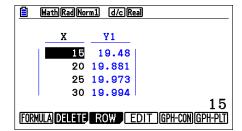
$$t \approx 9.8 \rightarrow 10 + 8 = 18 \text{ horas}$$

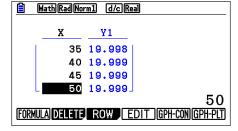
Às 18 horas, o número total de novas partilhas foi pela primeira vez superior a 500.

21.2
$$P(0) = \frac{100}{5+12e^{-0.3\times0}} = \frac{100}{17} \approx 5,88$$
 milhares de habitantes

21.2
$$P(10) = \frac{100}{5+12e^{-3}} \approx 17,87$$
 milhares de habitantes

21.3 Podemos obter o valor pretendido graficamente ou através de uma tabela (calculadora):





Verificamos que o número de habitantes tende a estabilizar nos 20 milhares.

pág. 139

22.1
$$N(0) = \frac{2500}{1+1499e^0} = \frac{2500}{1500} \approx 1,(6)$$

Havia cerca de 2 alunos infetados.

22.2
$$N(7) = \frac{2500}{1+1499e^{-0.82\times7}} \approx 429,632$$

Havia cerca de 430 alunos infetados.

22.3 50% dos alunos: 1250

$$N(t) = 1250 \Leftrightarrow \frac{2500}{1 + 1499e^{-0.82t}} = 1250 \Leftrightarrow 1 + 1499e^{-0.82t} = 2 \Leftrightarrow e^{-0.82t} = \frac{1}{1499} \Leftrightarrow t = \frac{1}{-0.82} \ln\left(\frac{1}{1499}\right) \approx 8.92 \approx 9 \text{ dias}$$

1 de outubro $\rightarrow t = 0$, então, t = 9 corresponde ao dia 10 de outubro

23.1 Com auxílio da calculadora gráfica, obtemos:

$$C(t) = \frac{25,08}{1 + 3,18e^{-0,55t}}$$

23.2.1 No dia da compra:
$$\frac{25,08}{1+3,18e^{-0,55\times0}} = \frac{25,08}{4,18} = 6,0 \text{ cm}$$

Passado 1 ano:
$$\frac{25,08}{1+3,18e^{-0.55\times12}} \approx 25,0 \text{ cm}$$

23.2.2
$$\frac{25,08}{1+3,18e^{-0.55t}} = 17 \iff 1+3,18e^{-0.55t} = \frac{25,08}{17} \iff -0.55t = \ln\left(\frac{\frac{25,08}{17}-1}{3,18}\right) \iff t \approx 3,4558$$

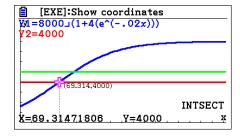
ou seja, no mês de março, por volta do dia $0.4558 \times 31 \approx 14$ de março .

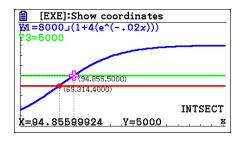
24.1
$$N(0) = \frac{8000}{1+4e^{-0.02\times0}} = 1600$$

$$N(364) = \frac{8000}{1 + 4e^{-0.02 \times 364}} \approx 7978,007$$

$$N(364) - N(0) = 6378$$
 visitantes

24.2 Com auxílio da calculadora gráfica, obtemos:

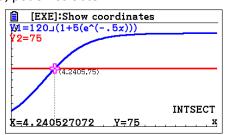




Podemos dizer que o número de visitantes foi superior a 4000 e inferior a 5000 entre o 70° dia e o 94° dia, isto é, durante 94 - 70 + 1 = 25 dias .

pág. 140

25.1 Recorrendo à calculadora gráfica, podemos obter:



O número de visitantes ultrapassou os 75 mil, 4,2 anos após o início de 1990, por isso, durante o ano de 1994.

25.2 $V(10) = \frac{120}{1+5e^{-0.5\times10}} \approx 116,0890$ milhares de visitantes

$$V(5) = \frac{120}{1+5e^{-0.5\times 5}} \approx 85,0807$$
 milhares de visitantes

Percentagem de aumento:
$$\frac{V(10)-V(5)}{V(5)} \approx 36\%$$

26.1 Como a amplitude é medida em milímetros, 3 cm = 30 mm e vem:

$$M = 3 + \log 30 \Leftrightarrow M \approx 4.5$$

Logo, o sismo terá uma magnitude de 4,5 na escala de Richter.

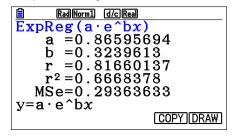
26.2 Sendo M = 5,7:

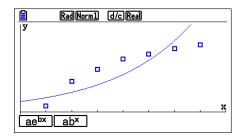
$$5.7 = 3 + \log A \Leftrightarrow 5.7 - 3 = \log A \Leftrightarrow$$

 $\Leftrightarrow 2.7 = \log A \Leftrightarrow$
 $\Leftrightarrow A \approx 10^{2.7} \approx 501$

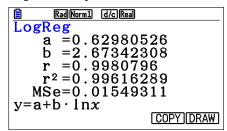
Assim, a amplitude registada pelo sismógrafo será de aproximadamente 501 mm.

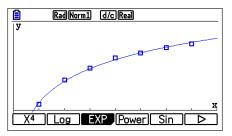
- **27.** $L(h) > 4 \Leftrightarrow \log (80 + h) + 2 > 4 \Leftrightarrow \log (80 + h) > 2 \Leftrightarrow 80 + h > 10^2 \Leftrightarrow h > 20$ Será necessário trabalhar mais de 20 horas.
- **28.** Para o modelo exponencial $y = a \times e^{bx}$:





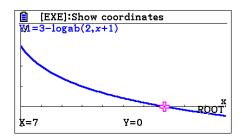
Para o modelo logarítmico $y = a + b \ln x$:





Podemos concluir que o modelo logarítmico é o que melhor se ajusta aos dados da experiência.

29.1 Usando a calculadora gráfica:



Ao fim de 7 minutos.

29.2
$$t = \frac{7}{2} = 3.5$$
 minutos $Q(3.5) = 3 - \log_2(3.5 + 1) \approx 0.8$ cl

30.
$$A(10) = 4.4 \Leftrightarrow 0.5 + 6 \ln (10k + 1) = 4.4 \Leftrightarrow \ln(10k + 1) = \frac{83}{120}$$

• analiticamente:
$$10k + 1 = e^{\frac{83}{120}} \iff k = \frac{e^{\frac{83}{120} - 1}}{10} \iff k \approx 0,1$$

• graficamente:

