I. Modelos matemáticos

Capítulo 1 Modelos de grafos

Check pág. 10

1.1 Vértices: B, C, D, E, F, G e H.

Arestas: BF, CD, CE (duas vezes), CF, DE, FG e FH.

1.2 É um grafo de ordem 7, porque tem 7 vértices

1.3 Por exemplo, $E \in D$, pois existe uma aresta a uni-los.

1.4 Por exemplo, BF e FH, pois incidem no mesmo vértice, F.

 $\mathbf{1.5} \; B$, $H \in G$, pois têm apenas uma aresta incidente.

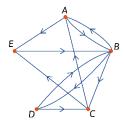
1.6 CE, pois une, em duplicado, os mesmos vértices.

2. O grafo não é simples, pois tem arestas paralelas: é um multigrafo. É um grafo conexo, pois existe sempre uma sequência de arestas a ligar quaisquer dois dos seus vértices.

3. Existem cinco soluções: $H \to F \to C \to D$, $H \to F \to C \to E \to D$ (duas soluções, pois há arestas paralelas) e $H \to F \to C \to E \to C \to D$ (duas soluções, por há arestas paralelas).

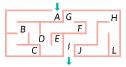
Check pág. 12

Cada vértice representa a casa de cada uma das "avós" e as arestas as ligações entre cada casa com indicação dos sentidos permitidos. Assim, a situação pode ser representada pelo digrafo seguinte.

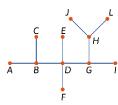


Check pág. 15

Vamos representar por letras a entrada, saída, cruzamentos e pontos sem saída no labirinto — estes serão os vértices do grafo.



Um grafo representativo deste labirinto pode ser:

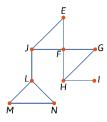


Assim, a sequência de vértices para entrar e sair do labirinto será $A \to B \to D \to G \to I$.

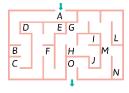
Prova dos 9

pág. 16

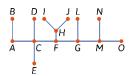
1.1 Por exemplo:



- **1.2** Ordem 9, pois tem 9 vértices.
- **1.3** É conexo, pois existe sempre uma sequência de arestas a unir qualquer par de vértices.
- **1.4** As arestas JL e HI são pontes, pois, se forem retiradas, desconectam o grafo.
- **2.1** Representando por letras a entrada, saída, cruzamentos e pontos sem saída no labirinto, que irão corresponder aos vértices do grafo, obtemos, por exemplo:

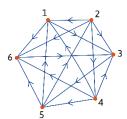


e um grafo correspondente:



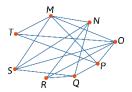
2.2 A sequência de vértices para entrar e sair do labirinto será $A \to C \to F \to G \to M \to O$.

- 3.1.1 Os vértices representam os jogadores e as arestas representam as partidas jogadas entre eles. O sentido das arestas significa "venceu a"
- 3.1.2 Como cada jogador vai fazer uma partida com cada um dos outros uma vez, o grafo é completo; é um grafo de ordem 6, porque é esse o número de vértices.
- **3.2** Por exemplo:



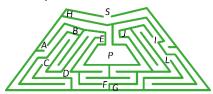
pág. 17

4. Seguindo a sugestão dada no enunciado, representamos cada uma das oito espécies de aves por um vértice, M, N, ... e T, sendo as arestas as relações de incompatibilidade entre as diferentes espécies. Obtemos o seguinte grafo.

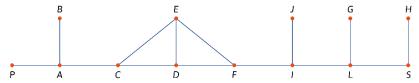


Atividade

Vamos representar por letras a entrada, saída, cruzamentos e pontos sem saída no labirinto, que vão corresponder aos vértices do grafo. Por exemplo:



e um grafo representativo da situação é:



Uma sequência para chegar à saída do labirinto será $P \rightarrow A \rightarrow C \rightarrow D \rightarrow F \rightarrow I \rightarrow L \rightarrow S$.

Check

pág. 19

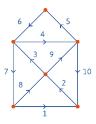
Mártico A D C D					
	Vértice	Α	В	С	D
	Grau	2	3	2	1

2.

Vértice	Α	В	С	D	Ε
Grau	5	5	4	3	3

Check pág. 20

Por exemplo:



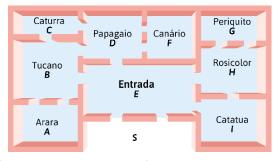
Check pág. 22

Sabemos que, num grafo conexo, podemos encontrar um trajeto euleriano se e só se existirem, no máximo, dois vértices de grau ímpar e, pelo menos, um circuito euleriano se e só se todos os vértices tiverem grau par. Assim, considerando os grafos da figura, podemos dizer que:

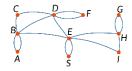
- admitem apenas trajeto: II, VII e VIII;
- admitem trajeto e circuito: VI e IX;
- não admitem trajeto (nem circuito): I, III, IV e V.

Check pág. 24

Vamos representar por uma letra, de A a I, cada uma das salas do clube, e por S a saída:



No grafo, cada sala e a saída será representada por um vértice e as arestas serão as portas de ligação:



É possível planear o percurso sem repetir portas, uma vez que temos apenas dois vértices com grau ímpar, $B \in D$, mas teremos de repetir três salas com aves.

Por exemplo, o percurso $S \to E \to I \to H \to G \to H \to E \to D \to F \to D \to C \to B \to A \to B \to E \to S$ repete as salas onde estão os rosicolores, os papagaios e os tucanos.

Prova dos 9

pág. 25

- **1.1** Grafo I: A: 3 B: 1 C: 2 D: 4
 - Grafo II: A: 2 B: 4 C: 4 D: 2 E: 3 F: 3
 - Grafo III: A: 1 B: 1 C: 2 D: 2 E: 4 F: 2 G: 2 H: 2
 - Grafo IV: A: 3 B: 3 C: 3 D: 3 E: 3 F: 3 G: 3 H: 3 I: 3 J: 3
- 1.2 O grafo IV, porque qualquer um dos seus vértices tem o mesmo grau (3).
- 1.3 I Número de arestas: 5

Soma dos graus de todos os vértices: 10

 $10 = 2 \times 5 \Leftrightarrow 10 = 10$

Proposição verdadeira

II - Número de arestas: 9

Soma dos graus de todos os vértices: 18

 $18 = 2 \times 9 \Leftrightarrow 18 = 18$

Proposição verdadeira

III - Número de arestas: 8

Soma dos graus de todos os vértices: 16

 $16 = 2 \times 8 \Leftrightarrow 16 = 16$

Proposição verdadeira

IV – Número de arestas: 15

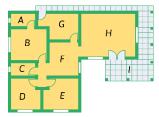
Soma dos graus de todos os vértices: 30

 $30 = 2 \times 15 \Leftrightarrow 30 = 30$

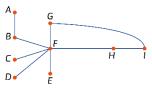
Proposição verdadeira

- **2.1** Trajeto euleriano: $B \to D \to C \to A \to B \to E \to D$; não existe um circuito euleriano porque o grafo tem vértices com grau ímpar.
- 2.2 Não existem nem trajeto nem circuito euleriano porque o grafo tem quatro vértices com grau ímpar.
- **2.3** Trajeto euleriano: $A \to B \to D \to C \to A \to D$; não existe circuito euleriano porque o grafo tem vértices de grau 3, que é ímpar.
- **2.4** Trajeto euleriano: $C \to D \to B \to E \to D \to B \to A \to E$; não existe circuito euleriano porque o grafo tem vértices de grau ímpar.
- **2.5** Circuito (e trajeto) euleriano: $A \rightarrow D \rightarrow D \rightarrow B \rightarrow C \rightarrow E \rightarrow A$
- **2.6** Circuito (e trajeto) euleriano: $A \rightarrow B \rightarrow E \rightarrow C \rightarrow B \rightarrow C \rightarrow D \rightarrow E \rightarrow A$

3.1 Começamos por atribuir uma letra a cada divisão (em que se inclui a varanda), que irão representar os vértices do grafo:



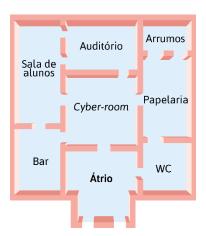
Em seguida, unimos os vértices por meio de arestas, que correspondem às ligações entre as divisões, obtendo, deste modo, um grafo de topologia:



3.2 Não é possível, porque existem mais de dois vértices com grau ímpar.

Atividade

Observemos o esquema do pavilhão:



O auditório e o *cyber-room* têm um número ímpar de portas, o que torna impossível o Jacinto ter passado por todas elas e acabar do lado de fora do pavilhão. Logo, é o Jacinto quem está a mentir.

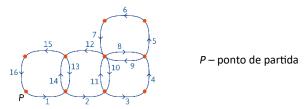
Check pág. 29

1. O guarda-noturno não consegue fazer a ronda passando uma só vez em cada rua. Se considerarmos que cada cruzamento é representado por um vértice, sendo as ruas as arestas, obtemos o seguinte grafo.

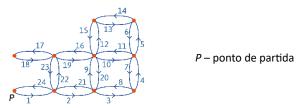


Observamos que existem vários vértices de grau ímpar (são quatro), o que torna impossível a pretensão do guarda-noturno.

O trajeto que repete o menor número de ruas é:

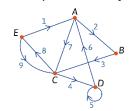


2. Desta vez o guarda noturno deverá percorrer duas vezes cada rua com habitações dos dois lados. Uma das soluções possíveis é:



Check pág. 33

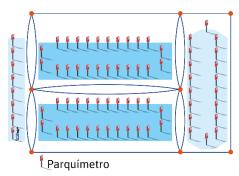
Existe um trajeto euleriano porque o grafo é conexo e tem exatamente dois vértices de grau ímpar — os vértices $C \in E$. A ordem de junção das arestas é a indicada pela numeração no grafo seguinte:



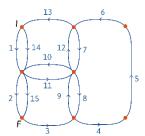
e um trajeto possível é $E \rightarrow A \rightarrow B \rightarrow C \rightarrow D \rightarrow D \rightarrow A \rightarrow C \rightarrow E \rightarrow C$.

1. Um conjunto de soluções possível é:

Zona urbana 1 – com base no esquema da área a controlar, podemos obter o grafo:



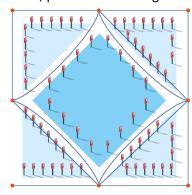
Como cada rua com parquímetros dos dois lados deve ser percorrida duas vezes, obtemos como solução possível o grafo:



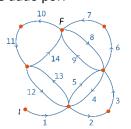
I – início do percurso

F – fim do percurso

Zona urbana 2 – de forma análoga à anterior, podemos obter o grafo:



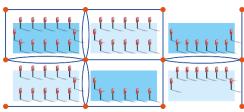
Um dos possíveis percursos do controlador é dado por:



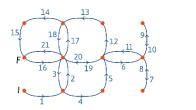
I – início do percurso

F – fim do percurso

Zona urbana 3 – o grafo a percorrer será:



Um percurso possível é:

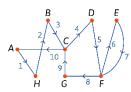


I – início do percurso

F – fim do percurso

pág. 35

2. Como todos os vértices têm grau par, o grafo admite pelo menos um circuito euleriano, isto é, é um grafo euleriano. Aplicando o algoritmo de Fleury, a ordem de junção das arestas é a indicada pela numeração no grafo seguinte.

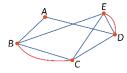


Podemos definir, por exemplo, o circuito $A \to H \to B \to C \to D \to F \to E \to F \to G \to C \to A$.

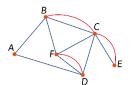
Check

pág. 38

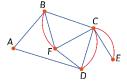
Para o grafo I



e para o grafo II



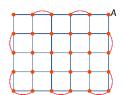
ou



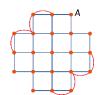
Check pág. 40

Seguindo o algoritmo descrito no manual para a eulerização de redes viárias retangulares, é fácil obter um circuito euleriano neste tipo de grafos.

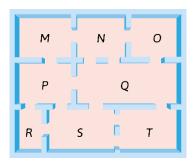
1.



2.

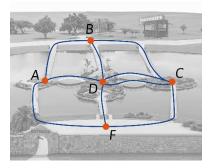


1.1 Observemos o esquema da mansão:



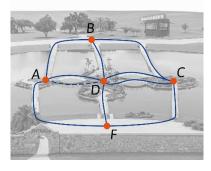
Facilmente se verifica que os quartos $S \in T$ têm um número ímpar de portas; logo, a Eugénia não consegue percorrer todos os quartos da mansão passando uma só vez por cada porta e regressar ao quarto inicial.

- **1.2** Basta, no entanto, abrir mais uma porta de S para T (ou fechar), para assim conseguir o que pretendia.
- **2.1** Vamos representar o problema por um grafo:



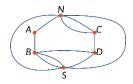
Não é possível percorrer todo os jardins, começando na entrada, passando uma única vez por cada ponte e terminando na loja de *souvenirs*, porque, além dos vértices F (início) e B (fim), existem mais vértices de grau ímpar.

2.2 Os vértices *B* e *F* podem manter o grau ímpar, mas devem ser os únicos. Construir mais uma ponte entre *A* e *D* resolveria o problema:



pág. 42

3.1 Se designarmos as margens por $N \in S$ e as "pequenas ilhas" por A, B, $C \in D$, estes pontos representarão os vértices do grafo, enquanto as pontes serão as arestas:



3.2.1 O grafo tem quatro vértices de grau ímpar, os vértices S, N, C e D, logo, o fotógrafo terá de repetir algumas travessias. Por exemplo, se começar em S e tiver de terminar neste mesmo ponto, basta repetir a aresta CD e a aresta NS, ficando com todos os vértices com grau par. Assim, o fotógrafo, além de atravessar uma vez cada uma das 11 pontes, terá de atravessar duas vezes as pontes Jefferson e Kennedy, pelo que terá de pagar:

$$11 \times 4 + 2 \times 4 = 52$$
 euros

3.2.2 Se o fotógrafo puder começar em S e terminar em N, por exemplo, apenas terá de repetir uma ponte, a ponte Kennedy, pelo que terá de pagar:

$$11 \times 4 + 1 \times 4 = 48$$
 euros

Check pág. 46

Grafo I: $A \rightarrow F \rightarrow C \rightarrow D \rightarrow E \rightarrow B \rightarrow A$, por exemplo.

Grafo II: $A \rightarrow C \rightarrow B \rightarrow D \rightarrow A$, por exemplo.

Grafo III: $E \rightarrow C \rightarrow D \rightarrow F \rightarrow B \rightarrow A \rightarrow E$, por exemplo.

Grafo IV: $A \rightarrow E \rightarrow F \rightarrow B \rightarrow C \rightarrow H \rightarrow G \rightarrow D \rightarrow A$, por exemplo.

Grafo V: não é possível. Grafo VI: não é possível.

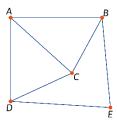
Prova dos 9 pág. 47

- **1.1.1** Não é possível, pois para regressar à estação Oriente terá de repetir as estações Olaias, Bela Vista, Chelas, Olivais e Cabo Ruivo.
- **1.1.2** Sim, é possível, por exemplo, Alameda, Campo Grande, Marquês de Pombal, Baixa-Chiado e, novamente, Alameda.
- **1.2** Podemos definir:
 - Baixa-Chiado, Alameda, Campo Grande, Saldanha, Marquês de Pombal e Baixa-Chiado;
 - Baixa-Chiado, Alameda, Campo Grande, Saldanha, S. Sebastião e Baixa-Chiado;
 - Baixa-Chiado, Alameda, Saldanha, Marquês de Pombal e Baixa-Chiado;
 - Baixa-Chiado, Alameda, Saldanha, S. Sebastião e Baixa-Chiado.

E ainda os mesmos circuitos no sentido inverso, num total de oito circuitos hamiltonianos.

pág. 48

2.1 Considerando o grafo inicial:



é fácil encontrar um circuito hamiltoniano: $A \rightarrow C \rightarrow D \rightarrow E \rightarrow B \rightarrow A$, por exemplo.

2.2 Se retirarmos a aresta AC (devido à rotura do cano), já não é possível encontrar um circuito hamiltoniano.

Atividade

Grafo completo com 3 vértices:

• Número de arestas: cada vértice liga-se aos outros dois, mas não contamos ligações repetidas:

$$\frac{3 \times 2}{2} = 3$$

• Número de circuitos hamiltonianos: um circuito hamiltoniano passa por todos os vértices uma única vez e volta ao início. Podemos começar em qualquer vértice e visitar os outros em duas ordens possíveis, por exemplo, $A \to B \to C \to A$ ou $A \to C \to B \to A$. Como há três vértices, há um circuito hamiltoniano distinto (porque a ordem inversa é o mesmo caminho).

Conclusão:

• Arestas: 3

Circuitos hamiltonianos: 1

Grafo completo com 4 vértices:

• Número de arestas: $\frac{4\times3}{2} = 6$

• Número de circuitos hamiltonianos: escolhemos um vértice como ponto de partida e temos 3 escolhas para o próximo, 2 para o seguinte e apenas 1 para o último, o que dá $3 \times 2 \times 1 = 6$ caminhos possíveis, mas, como cada circuito pode ser percorrido nos dois sentidos, dividimos o resultado anterior por 2, isto é, $\frac{6}{3} = 3$.

Conclusão:

• Arestas: 6

• Circuitos hamiltonianos: 3

Grafo completo com 5 vértices:

• Número de arestas: $\frac{5\times4}{2} = 10$

Número de circuitos hamiltonianos: escolhemos um vértice como ponto de partida e temos 4 escolhas para o próximo, 3 para o seguinte, 2 para o que se segue e 1 para o último, o que dá 4 × 3 × 2 × 1 = 24 caminhos possíveis, mas, como cada circuito pode ser percorrido nos dois sentidos, dividimos o resultado anterior por 2, isto é, : ²⁴/₂ = 12.

Conclusão:

Arestas: 10

Circuitos hamiltonianos: 12

Generalização para um grafo completo com n vértices:

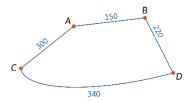
- Número de arestas: $\frac{n \times (n-1)}{2}$ (cada um dos n vértices liga-se a cada um dos outros n-1, mas não contamos repetições).
- Número de circuitos hamiltonianos: escolhemos um vértice como ponto de partida, percorremos os outros de todas as maneiras possíveis e dividimos por 2 para evitar contar percursos iguais mas com direções opostas: $\frac{(n-1)\times(n-2)\times...\times2\times1}{2}.$

Conclusão:

- Arestas: $\frac{n \times (n-1)}{2}$
- Circuitos hamiltonianos: $\frac{(n-1)\times(n-2)\times...\times2\times1}{2}$

Check

pág. 51



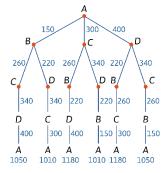
150 + 220 + 340 + 300 = 1010 metros

O percurso pode ser $A \to B \to D \to C \to A$ ou, no sentido inverso, $A \to C \to D \to B \to A$.

Check

pág. 53

Partindo de A e registando todas as hipóteses possíveis em cada etapa, obtemos a árvore:



e observamos que obtemos o percurso já anteriormente definido.

Check pág. 57

1. Utilizando o algoritmo dos mínimos sucessivos, obtemos 5 percursos, cada um correspondente a um dos cinco pontos de partida:

$$A \xrightarrow{30} B \xrightarrow{55} D \xrightarrow{40} E \xrightarrow{85} C \xrightarrow{45} A \qquad \text{Total: 255 km}$$

$$B \xrightarrow{30} A \xrightarrow{45} C \xrightarrow{50} D \xrightarrow{40} E \xrightarrow{65} B \qquad \text{Total: 230 km}$$

$$C \xrightarrow{45} A \xrightarrow{30} B \xrightarrow{55} D \xrightarrow{40} E \xrightarrow{85} C \qquad \text{Total: 255 km}$$

$$D \xrightarrow{40} E \xrightarrow{65} B \xrightarrow{30} A \xrightarrow{45} C \xrightarrow{50} D \qquad \text{Total: 230 km}$$

$$E \xrightarrow{40} D \xrightarrow{50} C \xrightarrow{45} A \xrightarrow{30} B \xrightarrow{65} E \qquad \text{Total: 230 km}$$

Há três percursos que correspondem à distância mínima de 230 km.

2. Primeiro, temos de ordenar as arestas por ordem crescente dos pesos das arestas:

$$A \xrightarrow{30} B; D \xrightarrow{40} E; A \xrightarrow{45} C; C \xrightarrow{50} D; B \xrightarrow{55} D$$

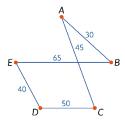
$$B \xrightarrow{60} C; B \xrightarrow{65} E; A \xrightarrow{70} E; A \xrightarrow{75} D; C \xrightarrow{85} E$$

As duas primeiras arestas a usar são $A = \frac{1}{30} B$ e $D = \frac{1}{40} E$, as quais não ficam unidas.

Prosseguindo, selecionamos $A \xrightarrow{45} C$ e $C \xrightarrow{50} D$ e rejeitamos $B \xrightarrow{55} D$ e $B \xrightarrow{60} C$, porque estas fazem concorrer três arestas no mesmo vértice.

A seguir, usamos a aresta $B = \frac{1}{65} E$ e eliminamos todas as seguintes ($A = \frac{1}{70} E$, $A = \frac{1}{75} D$ e $C = \frac{1}{85} E$), pois já temos o nosso circuito hamiltoniano.

O nosso percurso final será definido por:



 $A \rightarrow B \rightarrow E \rightarrow D \rightarrow C \rightarrow A$ Total: 230 km

1.1

	C. Branco
C. Branco	
Belmonte	71
Covilhã	59
Fundão	44
Penamacor	51
Idanha	35
V. V. Ródão	32
Vila de Rei	87
Sertã	68
Oleiros	63
Proença	51

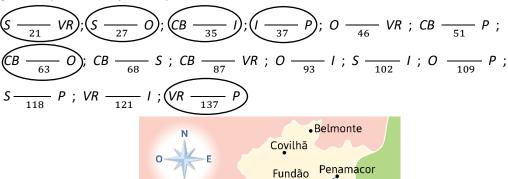
1.2 Por uma questão de comodidade, vamos usar apenas as iniciais de cada cidade.

Pelo algoritmo dos mínimos sucessivos:

$$CB \xrightarrow{35} I \xrightarrow{37} P \xrightarrow{109} O \xrightarrow{27} S \xrightarrow{21} VR \xrightarrow{87} CB$$
 (ou sentido inverso)

Distância total: 316 km

Pelo algoritmo por ordenação dos pesos das arestas:



Percurso: $CB \xrightarrow{35} I \xrightarrow{37} P \xrightarrow{137} VR \xrightarrow{21} S \xrightarrow{27} O \xrightarrow{63} CB$ (ou sentido inverso)

Proença-a-Nova

• Vila Velha de Ródão

Distância total: 320 km

Obtivemos um percurso menor (menos 4 km) pelo algoritmo dos mínimos sucessivos.

1.3 Algoritmo dos mínimos sucessivos:

$$CB \xrightarrow{32} VVR \xrightarrow{39} F \xrightarrow{23} C \xrightarrow{23} B \xrightarrow{117} PN \xrightarrow{42} O \xrightarrow{63} CB$$
 (ou sentido inverso)

Distância total: 369 km

Pelo algoritmo da ordenação dos pesos das arestas:

$$CB \xrightarrow{32} VVR \xrightarrow{33} PN \xrightarrow{42} O \xrightarrow{126} B \xrightarrow{23} C \xrightarrow{23} F \xrightarrow{44} CB$$
 (ou sentido inverso)

Distância total: 323 km.

A melhor solução foi obtida pelo algoritmo da ordenação dos pesos das arestas, com 323 km (menos 46 km).

pág. 59

- **2.1** Por exemplo: $C \xrightarrow{60} A \xrightarrow{252} L \xrightarrow{150} E \xrightarrow{78} B \xrightarrow{333} C$, com um total de 873 km.
- **2.2** Para concluirmos acerca do percurso ótimo, teríamos de analisar os 60 percursos. Utilizando os dois algoritmos, podemos obter uma dessas soluções. Podendo não ser a solução ótima, é uma boa solução.
- 2.3 Algoritmo dos mínimos sucessivos:

$$L \xrightarrow{150} E \xrightarrow{78} B \xrightarrow{333} C \xrightarrow{60} A \xrightarrow{252} L \qquad \text{Total: 873 km}$$

$$E \xrightarrow{78} B \xrightarrow{186} L \xrightarrow{201} C \xrightarrow{60} A \xrightarrow{306} E \qquad \text{Total: 831 km}$$

$$B \xrightarrow{78} E \xrightarrow{150} L \xrightarrow{201} C \xrightarrow{60} A \xrightarrow{371} B \qquad \text{Total: 860 km}$$

$$C \xrightarrow{60} A \xrightarrow{252} L \xrightarrow{150} E \xrightarrow{78} B \xrightarrow{333} C \qquad \text{Total: 873 km}$$

$$A \xrightarrow{60} C \xrightarrow{201} L \xrightarrow{150} E \xrightarrow{78} B \xrightarrow{371} A \qquad \text{Total: 860 km}$$

O melhor percurso, usando este algoritmo, é $E \to B \to L \to C \to A \to E$, com um total de 831 km. Algoritmo por ordenação dos pesos das arestas:

$$A \xrightarrow{60} C \xrightarrow{201} L \xrightarrow{150} E \xrightarrow{78} B \xrightarrow{371} A$$
, com um total de 860 km.

Conclusão: obtemos um percurso melhor usando o algoritmo dos mínimos sucessivos do que usando o algoritmo por ordenação dos pesos das arestas. O armazém de distribuição deve ficar em Évora.

Nota: partindo da melhor opção obtida pelo algoritmo dos mínimos sucessivos, $E \to B \to L \to C \to A \to E$, poderíamos também pensar que, para esse circuito específico, o armazém podia estar localizado em qualquer das cidades desde que se seguisse a ordem determinada pelo algoritmo, isto é, $B \to L \to C \to A$ $\to E \to B$ ou $L \to C \to A \to E \to B \to L$, etc.

- **3.1** $D \xrightarrow{5} C \xrightarrow{3} F \xrightarrow{5} B \xrightarrow{7} A \xrightarrow{12} E \xrightarrow{3} D$ (por exemplo), com um total de 35 dezenas de metros.
- 3.2 Algoritmo dos mínimos sucessivos:

$$A \xrightarrow{7} B \xrightarrow{5} F \xrightarrow{3} C \xrightarrow{5} D \xrightarrow{3} E \xrightarrow{12} A$$

$$B \xrightarrow{5} F \xrightarrow{3} C \xrightarrow{5} D \xrightarrow{3} E \xrightarrow{12} A \xrightarrow{7} B$$

$$C \xrightarrow{3} F \xrightarrow{5} B \xrightarrow{7} A \xrightarrow{12} E \xrightarrow{3} D \xrightarrow{5} C$$

$$D \xrightarrow{3} E \xrightarrow{5} F \xrightarrow{10} A \xrightarrow{7} B \xrightarrow{6} C \xrightarrow{5} D$$

$$Total: 35 dezenas de metros$$

$$Total: 35 dezenas de metros$$

$$Total: 36 dezenas de metros$$

$$Total: 35 dezenas de metros$$

$$Total: 35 dezenas de metros$$

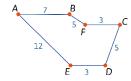
$$Total: 35 dezenas de metros$$

$$F \xrightarrow{3} C \xrightarrow{5} D \xrightarrow{3} E \xrightarrow{12} A \xrightarrow{7} B \xrightarrow{5} F$$

Total: 35 dezenas de metros

De acordo com a aplicação deste algoritmo, o agente poderia deixar o automóvel junto a qualquer prédio, exceto junto ao *D*, percorrendo uma distância igual a 35 dezenas de metros.

Pelo algoritmo da ordenação dos pesos das arestas, obtém-se também um circuito de comprimento igual a 35 dezenas de metros.



pág. 60

4. Pelo algoritmo dos mínimos sucessivos, saindo do aeroporto (A), obtém-se o percurso:

$$A \xrightarrow{5} PD \xrightarrow{9} L \xrightarrow{7} LF \xrightarrow{13} RG \xrightarrow{28} F \xrightarrow{8} P \xrightarrow{22} VF \xrightarrow{48} SC \xrightarrow{130} N \xrightarrow{63} A \quad \text{Total: 333 km}$$

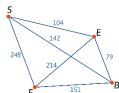
Pelo algoritmo por ordenação dos pesos das arestas, obtém-se o percurso:

$$A \xrightarrow{5} PD \xrightarrow{9} L \xrightarrow{7} LF \xrightarrow{13} RG \xrightarrow{36} VF \xrightarrow{19} F \xrightarrow{8} P \xrightarrow{28} N \xrightarrow{130} SC \xrightarrow{18} A$$
 Total: 273 km

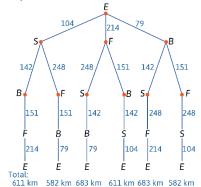
No Manual encontrámos um percurso menor do que qualquer um destes, o que vem reforçar a ideia de que apenas o método exaustivo nos garante uma solução ótima.

Atividade

1. Com a ajuda de um mapa, obtemos o seguinte grafo ponderado, em que os pesos são as distâncias em quilómetros



2. A árvore que se obtém, saindo de Évora, é:



O menor percurso, com 582 km, é:

Évora
$$\rightarrow$$
 Setúbal \rightarrow Faro \rightarrow Beja \rightarrow Évora (ou no sentido inverso)

- **3.** Para saber o percurso ótimo, temos de determinar todos os percursos possíveis: uma árvore para cada cidade de onde se parte. Com alguma paciência, podemos concluir que o amigo poderia ter saído de qualquer uma das quatro cidades, desde que tivesse feito um percurso determinado:
 - Saindo de Setúbal:

$$S \rightarrow E \rightarrow B \rightarrow F \rightarrow S$$
 Total: 582 km (ou no sentido inverso)

Saindo de Beja:

$$B \rightarrow E \rightarrow S \rightarrow F \rightarrow B$$
 Total: 582 km (ou no sentido inverso)

• Saindo de Faro:

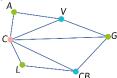
$$F \rightarrow S \rightarrow E \rightarrow B \rightarrow F$$
 Total: 582 km (ou no sentido inverso)

Sugestão: esta atividade poderá ser adaptada à região em que os alunos vivam, com outras cidades, ou dentro da mesma cidade, com pontos de interesse a ver durante uma visita.

O professor pode aumentar para cinco o número de cidades, ou pontos de interesse, de modo que os alunos verifiquem que o acréscimo de uma cidade, ou um ponto de interesse, aumenta de 6 para 24 o número de percursos.

Check pág. 66

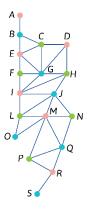
Os vértices do grafo representam os distritos da região centro: Aveiro (A), Coimbra (C), Castelo Branco (CB), Guarda (G), Leiria (L) e Viseu (V). As arestas representam os distritos adjacentes.



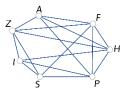
Começando pelo vértice de maior grau, C, atribuímos-lhe uma primeira cor (por exemplo, cor-de-rosa). Como é adjacente a todos os outros, passamos ao vértice com maior grau seguinte: pode ser G, CB ou V. Vamos optar por G. Atribuímos-lhe uma segunda cor (por exemplo, verde) e a mesma a A e a L, que não lhe são adjacentes. Finalmente, atribuímos uma terceira cor (por exemplo, azul) aos vértices V e CB, que não são adjacentes. O número cromático da região centro é três.

Prova dos 9 pág. 70

1. O número cromático de Portugal Continental é 3.

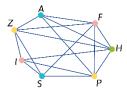


2. Um grafo representativo desta situação pode ser (utilizaremos para os vértices apenas a primeira letra de cada modalidade):



Grau dos vértices: A-4; F-5; H-5; P-5; S-4; I-4; Z-5

Começamos pelo vértice F, que colorimos com uma primeira cor, tal como o vértice I, que não lhe é adjacente. Passamos ao próximo vértice de maior grau, H, que colorimos com uma segunda cor, e, como não tem vértices não adjacentes, passamos ao seguinte e repetimos o procedido até termos colorido todos os vértices. Obtemos, então, a seguinte coloração para o grafo:



Podemos organizar o horário das aulas da seguinte forma:

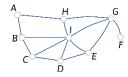
- 9h00: Aeróbica e Step;
- 10h00: Fitball e loga;
- 11h00: Hip-hop;
- 12h00: Zumba e Pump.

(Esta solução não é a única.)

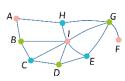
pág. 71

3.1 Vértices: A, B, ..., I – representam cada uma das províncias.

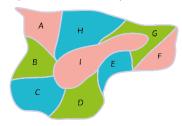
Arestas: representam a existência de fronteira entre duas províncias.



3.2 Começamos no vértice *I* , pois é o que tem maior grau, e atribuímos-lhe a primeira cor, bem como aos vértices *A* e *F* , que não lhe são adjacentes. Seguimos o mesmo procedimento para os outros vértices atendendo ao grau de cada um.

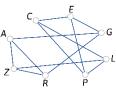


Serão necessárias três cores diferentes para colorir o mapa.

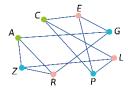


Atividade

1. Os vértices representam cada uma das espécies (utilizámos apenas a primeira letra de cada uma) e as arestas representam as relações de incompatibilidade entre as diferentes espécies. O grafo que modela esta situação pode ser representado por:



2. Todos os vértices têm grau três, pelo que podemos começar por um qualquer: vamos seguir a ordem alfabética. Obtemos a seguinte coloração do grafo:



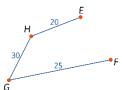
Precisamos de três recintos distintos para albergar todas as espécies:

- Um para a águia e a corça (A e C).
- Outro para o elefante, o leão e o rinoceronte (E, L e R).
- Um terceiro para a girafa, o panda e a zebra (G, P e Z).

No entanto, esta solução não é a única: A, L, E+C, Z, G+R, P é outra alternativa.

Check pág. 75

A ordem da seleção das arestas é H-E, G-F e G-H, sendo o peso total 20+25+30=75.



Check pág. 77

Obtemos as árvores:

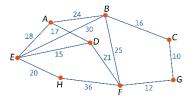
ambas com peso 6+8+9+10=33 . A diferença entre elas reside no facto de, durante a contrução, se tem optado por arestas diferentes, mas com o mesmo peso.

Prova dos 9 pág. 78

1. A árvore abrangente mínima pode, ou não, ser a mesma quer pelo algoritmo de Kruskal, quer pelo algoritmo de Prim, se em qualquer altura da construção escolhermos arestas diferentes mas com o mesmo comprimento. No entanto, o comprimento total é sempre igual e mínimo (comprimento: 6+4+7+7+6+5=35). O processo de construção também difere:

1.1 Algoritmo de Kruskal		Kruskal	1.2 Algoritmo de Prim		
			(começando em <i>B</i> , por exemplo)		
Ą	В	C	A B C		
D D	• F	É G	D F E G		
Ą	В	C	A B C		
4 D	• F	E 5	D F E G		
A	В	C	A B C		
4 D	6 F	E 5 G	D F E G		
Ą	В	C	A 7 B C		
4 D	F	E G	D F E G		
A 7	В	C	A 7 B C		
D e	F	E G	D F E G		
A	В	C 7 6	A 7 B C		
D e	F	E G	D 6 F E G		

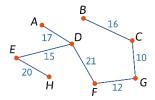
2. Pretende-se determinar uma árvore que contenha todos os vértices (abrangente) e com o menor comprimento. Observando o grafo:



vamos colocar as arestas por ordem crescente do seu peso:

$$C_{\frac{10}{10}}G;\,F_{\frac{12}{12}}G;\,D_{\frac{15}{15}}E;\,B_{\frac{16}{16}}C;\,A_{\frac{17}{17}}D;\,A_{\frac{18}{18}}E;\,E_{\frac{20}{20}}H;\,D_{\frac{21}{21}}F;\,A_{\frac{24}{24}}B;\,B_{\frac{25}{25}}F;\,B_{\frac{30}{30}}E;\,F_{\frac{36}{36}}H$$

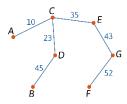
Em seguida, vamos ligando os vértices de acordo com os pesos das arestas (do menor para o maior) sem formar circuitos. Assim, a árvore que se obtém, neste caso, é:



O comprimento total é de 111 metros.

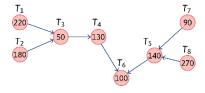
3. O processo é análogo ao do exercício anterior. É importante reter que em diversas situações a aplicação do algoritmo de Kruskal nos permite obter soluções ótimas.

Neste caso, o comprimento mínimo de cabo necessário é de 208 metros e pode traduzir-se pela seguinte árvore:



Check pág. 82

1. Atendendo não só os tempos necessários à concretização de cada uma das tarefas, mas também, e principalmente, as suas precedências, podemos traduzir os dados da tabela no grafo seguinte.



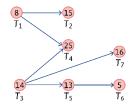
2. $T_1 \rightarrow T_3 \rightarrow T_4 \rightarrow T_6$: 500 minutos; $T_2 \rightarrow T_3 \rightarrow T_4 \rightarrow T_6$: 460 minutos; $T_7 \rightarrow T_5 \rightarrow T_6$: 330 minutos; $T_8 \rightarrow T_5 \rightarrow T_6$: 510 minutos

3. O caminho crítico é $T_8 \rightarrow T_5 \rightarrow T_6$ com um tempo mínimo de 510 minutos, ou seja, 8 h e 30 min.

Prova dos 9

pág. 83

1.1 Os grandes projetos requerem uma calendarização de execução, um acompanhamento constante e uma perfeita coordenação das tarefas inerentes à sua concretização, não só para evitar atrasos, mas também para evitar custos adicionais. Neste caso concreto, pretendemos esquematizar através de um grafo a informação fornecida pela tabela e que diz respeito às tarefas que ocorrem diariamente num aeroporto. Assim, tendo em conta não só os tempos necessários à concretização de cada uma das tarefas, mas também, e principalmente, as suas dependências, podemos traduzir os dados da tabela no digrafo seguinte.



1.2 As tarefas T₁ e T₃ iniciam-se simultaneamente: ao fim de 8 minutos T₂ começa e após 14 minutos (do início) podem começar as tarefas T₄, T₅ e T₇. São necessários mais 13 minutos (14 + 13 = 27 minutos após o início das operações) para dar início a T₆. Nesta altura T₂ já terminou, mas T₄ e T₇ ainda não. Para concluir T₄ são necessários 14 minutos (para realizar T₃) mais 25 minutos, num total de 39 minutos. Como as restantes tarefas (T₂, T₅, T₆ e T₇) não dependem da realização de T₄, e se realizam em menos tempo, podemos concluir que o caminho crítico (formado pelas tarefas críticas, isto é, pelas tarefas cujo atraso na execução se repercute automaticamente na duração total do projeto) é formado pelas tarefas T₃ e T₄, com uma duração de 14 + 25 = 39 minutos.

2.1

Tarefa	Duração (dias)	Precedências
Α	2	Nenhuma
В	4	А
С	1	В
D	5	Nenhuma
E	4	C e D
F	5	E
G	9	C e D
Н	3	F e G

2.2 A duração mínima do projeto é: 2+4+1+4+5+3=19 dias O caminho crítico é: $A \rightarrow B \rightarrow C \rightarrow E \rightarrow F \rightarrow H$