I. Modelos matemáticos

Capítulo 1 Modelos de grafos

Exercícios de aplicação

pág. 88

1.1 Apenas o grafo I não é conexo, pois não existe nenhuma aresta a ligar vértice V_3 a outro vértice.

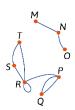
1.2 e **1.3**

Grafo	Nº de vértices	Ordem	Vértices	Nº de arestas	Arestas
1	3	3	V_1 , V_2 e V_3	2	V_1V_2 e V_2V_2
II	4	4	$egin{array}{c} V_1 \ , \ V_2 \ , \ V_3 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	3	V_1V_2 , V_2V_3 e V_3V_4
III	4	4	A, B, C e D	5	AD (duas vezes), AC, BD e CD
IV	5	5	A, B, C, D e E	9	AB, AC, AD, AE, BD, BE, CD, CE e DE

2.1

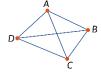
2.2

2.3



3. Os grafos das alíneas 2.1 e 2.2 são conexos, pois existe sempre uma sequência de arestas a unir quaisquer dois vértices.

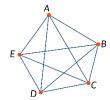
4.1



Número de vértices: 4

Número de arestas: 6

$$6 = \frac{4 \times 3}{2}$$

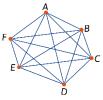


Número de vértices: 5

Número de arestas: 10

$$10 = \frac{5 \times 4}{2}$$

4.3

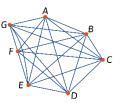


Número de vértices: 6

Número de arestas: 15

$$15 = \frac{6 \times 5}{2}$$

4.4



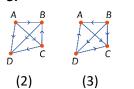
Número de vértices: 7

Número de arestas: 21

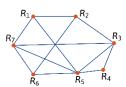
$$21 = \frac{7 \times 6}{2}$$

Seja n o número de vértices de um grafo completo. O número de arestas é dado por $\frac{n(n-1)}{2}$.

5.



6.



pág. 89

7.1 A: 2; B: 3; C: 2; D: 2; E: 3; F: 1; G: 1; H: 2

7.2 A: 3; B: 3; C: 4; D: 3; E: 3

7.3 A: 2; B: 3; C: 3; D: 3; E: 3; F: 3; G: 5

7.4 A: 2; B: 3; C: 2; D: 2; E: 2; F: 1

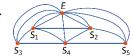
	Soma dos graus (S)	Número de arestas (n)	S = 2×n
Grafo 7.1	16	8	16 = 2×8
Grafo 7.2	16	8	16 = 2×8
Grafo 7.3	20	10	20 = 2×10
Grafo 7.4	12	6	12 = 2×6

- 9.1.1 Os grafos são todos de ordem 6, pois têm 6 vértices.
- **9.1.2** Os grafos I e II são simples, porque não têm arestas paralelas nem lacetes; o grafo III é um multigrafo.
- **9.1.3** Os grafos II e III são conexos, pois existe sempre uma aresta, ou sequência de arestas, a unir quaisquer dois vértices; o grafo I desconexo, pois não existe nenhuma aresta a ligar o vértice *A* a um dos outros vértices.
- **9.1.4** Pontes são arestas de um grafo que, ao serem retiradas, o tornam desconexo. Assim:
 - grafo I: a aresta CD;
 - grafo II: as arestas EF, EC, DB, AD e AE;
 - grafo III: as arestas TU, UX e UV.
- 9.2 Apenas o grafo III é regular, pois os vértices têm todos o mesmo grau (grau 3).
- **10.1** Trajeto euleriano. Não tem circuito porque tem dois vértices de grau ímpar.
- 10.2 Não tem trajeto euleriano pois tem mais de dois vértices de grau ímpar.
- **10.3** Circuito euleriano.
- 10.4 Trajeto euleriano. Não tem circuito porque tem dois vértices de grau ímpar.
- 11. Sim, pois todos os vértices têm grau par.
- **12.** A afirmação é falsa. Para além de todos os vértices terem de ser de grau par, o grafo tem de ser conexo. Por exemplo:

Neste grafo todos os vértices têm grau par, mas não é possível encontrar um circuito euleriano porque é desconexo.

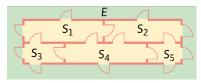
pág. 90

13.1

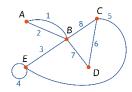


13.2 E – grau 9; S_1 – grau 5; S_2 – grau 5; S_3 – grau 4; S_4 – grau 5; S_5 – grau 4

- **13.3** Sim, é possível, fazendo, por exemplo, o percurso $E \to S_1 \to S_2 \to S_5 \to S_4 \to S_3 \to E$.
- 13.4 Não é possível, porque existem vértices de grau ímpar (salas com um número ímpar de portas).
- **13.5** Encerrando uma das portas de S_1 que dá acesso ao exterior e a porta de ligação entre S_2 e S_4 , ficam todas as salas com um número par de portas:



- **14.** Se eliminarmos FG, os vértices F e G passam a ter grau par, como os restantes.
- **15.** Não é possível encontrar um circuito, porque nem todos os vértices têm grau par. Como existem apenas dois vértices de grau ímpar, $B \in C$, podemos e encontrar um trajeto euleriano que comece num deles e termine no outro. Começando no vértice B, por exemplo, a ordem de inclusão das arestas por aplicação do algoritmo de Fleury é a indicada no seguinte grafo pela numeração crescente:



16. É possível, pois todos os vértices têm grau par. Um percurso pode ser, por exemplo:

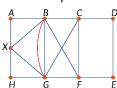
$$A \rightarrow X \rightarrow Z \rightarrow A \rightarrow M \rightarrow N \rightarrow O \rightarrow P \rightarrow Q \rightarrow O \rightarrow U \rightarrow R \rightarrow S \rightarrow T \rightarrow U \rightarrow V \rightarrow A$$

17. Sim, porque todos os vértices têm grau par. Por exemplo:

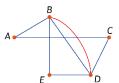
$$A \rightarrow B \rightarrow D \rightarrow E \rightarrow F \rightarrow I \rightarrow J \rightarrow K \rightarrow N \rightarrow M \rightarrow L \rightarrow I \rightarrow H \rightarrow M \rightarrow O \rightarrow C \rightarrow H \rightarrow G \rightarrow D \rightarrow C \rightarrow A$$

pág. 91

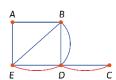
- **18.1** Não, porque o vértice X tem grau par e há dois vértices de grau ímpar.
- **18.2** Só consegue se repetir a aresta BG (fazendo com que os vértices $B \in G$ «figuem com grau par»):



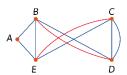
Por exemplo, $X \to A \to B \to C \to D \to E \to F \to B \to G \to C \to F \to G \to H \to X \to G \to B \to X$.



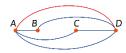
19.3



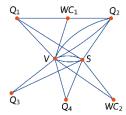
19.2



19.4

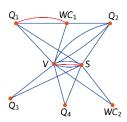


20.1 Os vértices representam as divisões e as arestas representam as ligações entre as divisões.



20.2 A ronda pretendida não é possível, pois existem vértices com grau ímpar, Q_1 , WC_1 , $V \in S$.

20.3 Por exemplo,

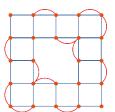


21.1 Não existe circuito euleriano, porque há vértices de grau ímpar.

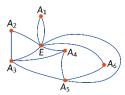
21.2

pág. 92

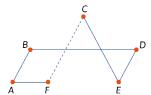
22.



23.1 Os vértices representam as divisões e o exterior e as arestas representam as ligações entre divisões e entre estas e o exterior. Um grafo que representa esta situação é, por exemplo:



- **23.2** Esse circuito não é possível porque existem, no grafo, vértices de grau ímpar, $A_4 \in E$.
- **23.3** Basta duplicar a aresta EA_4 . No contexto do problema, significa que a porta existente entre $E \in A_4$ deverá ser passada duas vezes.
- **24.** Repete o vértice *C* : num circuito hamiltoniano não pode haver repetição de vértices, exceto o primeiro, que também é o último.
- **25.1** Existe: $A \rightarrow E \rightarrow D \rightarrow B \rightarrow C \rightarrow A$, por exemplo.
- **25.2** Existe: $A \rightarrow C \rightarrow D \rightarrow B \rightarrow E \rightarrow F \rightarrow A$, por exemplo.
- **25.3** Existe: $J \rightarrow L \rightarrow M \rightarrow F \rightarrow G \rightarrow H \rightarrow I \rightarrow C \rightarrow D \rightarrow E \rightarrow A \rightarrow B \rightarrow J$, por exemplo.
- **25.4** Não existe.
- **26.** Como os vértices *A* , *D* e *E* têm grau 2, teremos de usar as arestas incidentes nestes vértices. Assim, para qualquer circuito hamiltoniano, teremos de usar obrigatoriamente as arestas:



e, para completar o circuito, só pode ser com a inclusão da aresta FC:

$$A \rightarrow F \rightarrow C \rightarrow E \rightarrow D \rightarrow B \rightarrow A$$

$$F \rightarrow C \rightarrow E \rightarrow D \rightarrow B \rightarrow A \rightarrow F$$

$$C \rightarrow E \rightarrow D \rightarrow B \rightarrow A \rightarrow F \rightarrow C$$

$$E \rightarrow D \rightarrow B \rightarrow A \rightarrow F \rightarrow C \rightarrow E$$

$$B \rightarrow A \rightarrow F \rightarrow C \rightarrow E \rightarrow D \rightarrow B$$

$$D \rightarrow B \rightarrow A \rightarrow F \rightarrow C \rightarrow E \rightarrow D$$

Assim, o circuito é sempre o mesmo, exceto o ponto de partida e o de chegada.

- **27.1** Acrescenta-se *ED* (ou *DC*, por exemplo).
- **27.2** Acrescenta-se *EG* (ou *AG* , por exemplo).

28.2 Sim, pois passa em cada um uma única vez.

29. Por exemplo, $B \to R_1 \to R_6 \to R_2 \to R_3 \to R_4 \to R_5 \to R_7 \to R_8 \to B$.

30.

A: circuito euleriano.

B: circuito euleriano.

C: circuito hamiltoniano.

D: Circuito hamiltoniano.

31. Problema do caixeiro-viajante.

32.1 Algoritmo dos mínimos sucessivos:

$$A \xrightarrow{5} B \xrightarrow{20} D \xrightarrow{30} C \xrightarrow{10} A \quad \text{Total: 65}$$

$$B \xrightarrow{5} A \xrightarrow{10} C \xrightarrow{30} D \xrightarrow{20} B \quad \text{Total: 65}$$

$$C \xrightarrow{10} A \xrightarrow{5} B \xrightarrow{20} D \xrightarrow{30} C \quad \text{Total: 65}$$

$$D \xrightarrow{10} A \xrightarrow{5} B \xrightarrow{30} C \xrightarrow{30} D \quad \text{Total: 75}$$

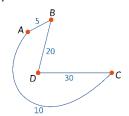
Percurso mínimo, com comprimento igual a 65, a começar em A, em B ou em $C: A \to B \to D \to C \to A$ ou $B \to A \to C \to D \to B$ ou $C \to A \to B \to D \to C$, respetivamente.

Algoritmo por ordenação dos pesos das arestas: começamos por ordenar as arestas por ordem crescente dos seus pesos:

$$A \xrightarrow{5} B$$
; $A \xrightarrow{10} C$; $A \xrightarrow{10} D$; $B \xrightarrow{20} D$; $B \xrightarrow{30} C$; $C \xrightarrow{30} D$

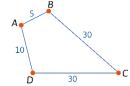
Em seguida, escolhemos, sucessivamente, a aresta a que corresponde o valor mais baixo, nunca escolhendo três arestas que concorram num mesmo vértice e não formando um circuito quando ainda há vértices por visitar. Depois de escolher a primeira aresta, *AB*, as duas seguintes têm o mesmo peso, o que nos vai levar a obter circuitos diferentes dependendo da aresta escolhida neste ponto. Assim, se optarmos por:

• AC, obtemos:



Total: 65

• AD , obtemos:



Total: 75

32.2 Algoritmo dos mínimos sucessivos:

$$A \xrightarrow{52} D \xrightarrow{58} B \xrightarrow{133} C \xrightarrow{75} A$$
 Total: 318

$$B \xrightarrow{58} D \xrightarrow{52} A \xrightarrow{75} C \xrightarrow{133} B$$
 Total: 318

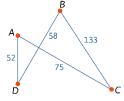
$$C \xrightarrow{68} D \xrightarrow{52} A \xrightarrow{61} B \xrightarrow{133} C$$
 Total: 314

$$C \xrightarrow{68} D \xrightarrow{52} A \xrightarrow{61} B \xrightarrow{133} C \text{ Total: 314}$$

$$D \xrightarrow{52} A \xrightarrow{61} B \xrightarrow{133} C \xrightarrow{68} D \text{ Total: 314}$$

Percurso a começar em C ou D, com 314.

Algoritmo por ordenação dos pesos das arestas:



Percurso: $A \rightarrow D \rightarrow B \rightarrow C \rightarrow A$

Total: 318

32.3 Algoritmo dos mínimos sucessivos:

$$A \xrightarrow{1} F \xrightarrow{3} E \xrightarrow{5} D \xrightarrow{8} C \xrightarrow{7} B \xrightarrow{2} A$$

$$B \xrightarrow{2} A \xrightarrow{1} F \xrightarrow{3} E \xrightarrow{5} D \xrightarrow{8} C \xrightarrow{7} B$$

$$C \xrightarrow{7} B \xrightarrow{2} A \xrightarrow{1} F \xrightarrow{3} E \xrightarrow{5} D \xrightarrow{8} C$$

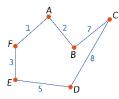
$$D \xrightarrow{5} E \xrightarrow{3} F \xrightarrow{1} A \xrightarrow{2} B \xrightarrow{7} C \xrightarrow{8} D$$

$$E \xrightarrow{3} F \xrightarrow{1} A \xrightarrow{2} B \xrightarrow{7} C \xrightarrow{8} D \xrightarrow{5} E$$

$$F \xrightarrow{1} A \xrightarrow{2} B \xrightarrow{7} C \xrightarrow{8} D \xrightarrow{5} E \xrightarrow{3} F$$

Têm todos o mesmo comprimento: 26

Algoritmo por ordenação dos pesos das arestas:

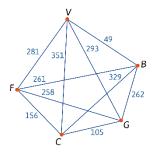


Percurso: $A \rightarrow F \rightarrow E \rightarrow D \rightarrow C \rightarrow B \rightarrow A$

Total: 26

pág. 94

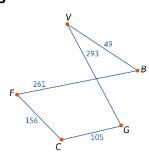
33.1



33.2 Por exemplo:

$$B \to V \to F \to G \to C \to B$$
: 49 + 281 + 258 + 105 + 329 = 1022 km
 $B \to F \to V \to G \to C \to B$: 261 + 281 + 293 + 105 + 329 = 1269 km

33.3

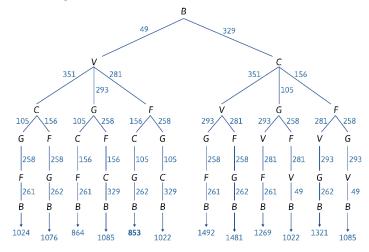


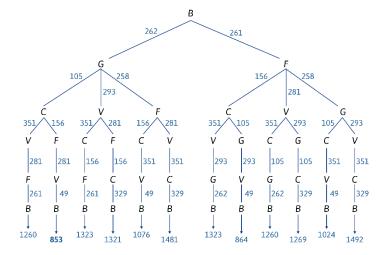
Percurso: $B \rightarrow F \rightarrow C \rightarrow G \rightarrow V \rightarrow B$

Comprimento: 864 km

33.4
$$B \rightarrow V \rightarrow F \rightarrow C \rightarrow G \rightarrow B$$
: 49 + 281 + 156 + 105 + 262 = 853 km

33.5 Sim, o algoritmo usado em 33.4.



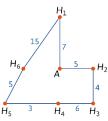


34. Algoritmo dos mínimos sucessivos:

$$A \xrightarrow{5} H_2 \xrightarrow{4} H_3 \xrightarrow{6} H_4 \xrightarrow{3} H_5 \xrightarrow{5} H_6 \xrightarrow{15} H_1 \xrightarrow{7} A$$

Total: 45 km

Algoritmo por ordenação dos pesos das arestas:

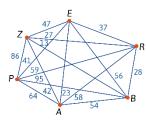


Percurso: $A \rightarrow H_1 \rightarrow H_6 \rightarrow H_5 \rightarrow H_4 \rightarrow H_3 \rightarrow H_2 \rightarrow A$

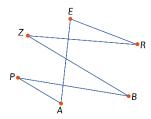
Total: 45 km

35.1 e **35.2** Os vértices representam a empresa e cada filial (designadas pela primeira letra de cada uma, exceto Estremoz, que designaremos pela letra *Z*); as arestas representam as ligações entre cada filial e entre estas e a empresa.

Cada aresta terá um peso associado que indica a distância, em quilómetros, entre cada filial e entre estas e a empresa.



35.3 Começamos com a aresta $Z - \frac{1}{13}B$, seguida de $A - \frac{1}{23}E$ e de $Z - \frac{1}{27}R$. Excluímos $R - \frac{1}{28}B$, que forma um circuito, e continuamos com $R - \frac{1}{37}E$, excluindo sempre as arestas que formem um circuito e que não se encontrem três arestas no mesmo vértice. Finalizamos com $P - \frac{1}{64}A$ e $P - \frac{1}{95}B$.

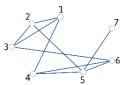


O percurso é: $E \to R \to Z \to B \to P \to A \to E$ (ou no sentido inverso)

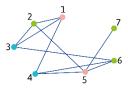
O comprimento mínimo é: 13 + 23 + 27 + 37 + 64 + 95 = 259 quilómetros

pág. 95

36.1 Os vértices representam as disciplinas e as arestas representam as incompatibilidades de realização de exame no mesmo dia.

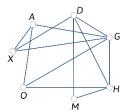


36.2 Vamos colorir os vértices do grafo, começando pelo vértice de maior grau, colorindo com a mesma cor os vértices não adjacentes. Obteremos o grafo:

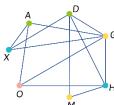


São necessários, pelo menos, três dias: um dia para os exames 1 e 5, outro para os exames 3 e 4 e um terceiro dia para os exames 2, 6 e 7.

37.1 Os vértices representam os diferentes jogos e as arestas representam as impossibilidades de agendar dois jogos no mesmo dia. Um grafo que traduz os dados da tabela é, por exemplo:



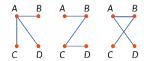
37.2 Serão necessários, no mínimo, quatro dias. Por exemplo:



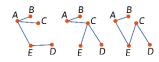
- **37.3** Uma organização possível do campeonato seria: um dia com abalone e damas, outro com gamão e mastermind, outro com hex e xadrez e outro com ouri.
- **38.1** Não é, porque tem um circuito.
- **38.2** É, porque é conexo e sem circuitos.
- **38.3** Não é, porque tem pelo menos um circuito.
- **38.4** É, porque é conexo e sem circuitos.

pág. 96

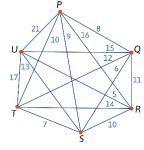
39.1 Por exemplo:



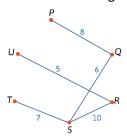
39.2 Por exemplo:



40.1



40.2 Podemos usar o algoritmo de Kruskal para obter a árvore abrangente mínima.



Comprimento: 36 dezenas de metros

40.3 Somas das distâncias a partir de:

P:
$$8 + 16 + 9 + 10 + 21 = 64$$
 dezenas de metros

Q:
$$8 + 11 + 6 + 12 + 15 = 52$$
 dezenas de metros

R:
$$16 + 11 + 10 + 14 + 5 = 56$$
 dezenas de metros

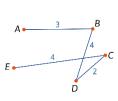
S:
$$9 + 6 + 10 + 7 + 13 = 45$$
 dezenas de metros

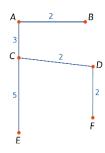
$$T: 10 + 12 + 14 + 7 + 17 = 60$$
 dezenas de metros

$$U: 21 + 15 + 5 + 13 + 17 = 71$$
 dezenas de metros

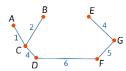
A central deve situar-se em S, pois é a que minimiza as distâncias a cada uma das cidades.

41.1 e **41.2** As árvores finais obtidas por qualquer um dos métodos são iguais e têm o mesmo peso: 13 para o grafo I e 14 para o grafo II.





42. O tempo mínimo para os bombeiros será de 22 minutos e o percurso é representado pela árvore:



pág. 97

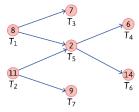
43.1

Tarefas	Tempo (dias)	Precedências
T ₁	6	Nenhuma
T ₂	9	Nenhuma
<i>T</i> ₃	10	Nenhuma
T ₄	5	<i>T</i> ₁
<i>T</i> ₅	8	<i>T</i> ₂ e <i>T</i> ₃
<i>T</i> ₆	12	<i>T</i> ₃
<i>T</i> ₇	12	<i>T</i> ₄ e <i>T</i> ₅
T ₈	7	<i>T</i> ₄ e <i>T</i> ₆
T 9	6	<i>T</i> ₆

43.2 10 + 8 + 12 = 30 $(T_3 \rightarrow T_5 \rightarrow T_7)$

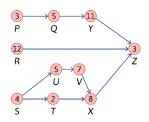
O tempo mínimo é 30 dias.

44.1



44.2 11 + 2 + 14 = 27 horas $(T_2 \rightarrow T_5 \rightarrow T_6)$

45.1 Considerando os tempos necessários à concretização de cada uma das tarefas e às suas precedências, podemos traduzir os dados da tabela no grafo seguinte:



45.2 Considerando todas as sequências de tarefas possíveis:

$$P \to Q \to Y \to Z : 3 + 5 + 11 + 3 = 22$$
 meses

$$R \to Z : 12 + 3 = 15$$
 meses

$$S \rightarrow U \rightarrow V \rightarrow X \rightarrow Z: 4+5+7+8+3=27$$
 meses

$$S \rightarrow T \rightarrow X \rightarrow Z: 4+2+8+3=17$$
 meses

O caminho crítico é $S \to U \to V \to X \to Z$ e serão necessários, no mínimo, 27 meses para concluir o projeto.

46.

Tarefas	Tempo (horas)	Precedências
T_1	20	Nenhuma
T_2	12	T_{1}
T_3	9	T_2
T_4	11	Nenhuma
T_5	17	T_4
T_6	22	T_5 e T_7
T_7	15	Nenhuma
T_8	35	T_3 , T_6 e T_9
T_9	16	Nenhuma

As possíveis sequências de tarefas são:

$$T_1 \rightarrow T_2 \rightarrow T_3 \rightarrow T_8$$
 (76 horas)

$$T_4 \rightarrow T_5 \rightarrow T_6 \rightarrow T_8$$
 (85 horas)

$$T_7 \rightarrow T_6 \rightarrow T_8$$
 (72 horas)

$$T_9 \rightarrow T_8$$
 (51 horas)

As tarefas que constituem o caminho crítico são T_4 , T_5 , T_6 e T_8 e são necessários, no mínimo, 13 dias (85 horas) para concluir o projeto.