Teste 4

pág. 86

1.1 Cada filho pode ser rapaz (M) ou rapariga (F), com probabilidade P(M) = P(F) = 0.5. O número de casos possíveis é 8: (MMM), (MMF), (MFM), (FMM), (FMM), (FMFM), (FMFM), (FMFM) e (FFFM).

Os casos favoráveis são (MMF), (MFM) e (FMM).

A probabilidade de o casal ter exatamente dois rapazes é $\frac{3}{8}$.

1.2 Ter, pelo menos, uma rapariga é ter uma rapariga, duas raparigas ou três raparigas, pelo que os casos favoráveis são (MMF), (MFM), (FMM), (FMM), (FMF), (MFF) e (FFF).

A probabilidade de o casal ter, pelo menos, uma rapariga é $\frac{7}{8}$.

- **1.3** A probabilidade de o casal ter três rapazes é $\frac{1}{8}$.
- **1.4** A probabilidade de o casal ter um rapaz e duas raparigas é $\frac{3}{8}$.
- **2.1** $S = \{(1,2), (1,3), (1,4), (1,5), (2,3), (2,4), (2,5), (3,4), (3,5), (4,5)\}$
- **2.2.1** Tendo em conta o espaço de resultados associado a esta experiência, tem-se que $P = \frac{1}{10}$.
- **2.2.2** Considerando que um dos piores são os que têm pontuação 4 ou 5, tem-se que $P = \frac{2}{10} = \frac{1}{5}$.
- 3. De acordo com a sugestão, a tabela onde figuram todas as somas possíveis será:

	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

Tendo em conta os dados da tabela, as probabilidades de obter cada uma das somas é a seguinte:

	x_i	2	3	3	2	1	5		6	7	•	8	9		1	0	1	1	12
Ī	$P(X=x_i)$	1	2	1	3	1	4	1	5	6	1	5	4	1	3	1	2	1	1
	$P(X = X_i)$	36	$\frac{1}{36}$ =	1 8	36	12	36	= - 9	36	36	$=\frac{1}{6}$	36	36	= - 9	36	$=\frac{1}{12}$	36	1 8	36

Assim, por exemplo:

- o Jogador 1 ganha se a soma estiver entre 3 e 6 (probabilidade $\frac{7}{18}$);
- o Jogador 2 ganha se a soma estiver entre 8 e 11 (probabilidade $\frac{7}{18}$);
- o valor transita para a jogada seguinte se a soma for 2 ou 12 (probabilidade $\frac{1}{9}$);
- o valor reverte para a Felismina se a soma for 7 (probabilidade $\frac{1}{6}$).

pág. 87

4. Consideremos os acontecimentos:

A: "preferir a atividade A"

B: "preferir a atividade B"

C: "ter idade inferior ou igual a 16"

4.1
$$P(A \mid C) = \frac{P(A \cap C)}{P(C)} = \frac{15}{20} = \frac{3}{4}$$

4.2
$$P(C \mid B) = \frac{P(C \cap B)}{P(B)} = \frac{5}{15} = \frac{1}{3}$$

4.3
$$P(B \mid \bar{C}) = \frac{P(B \cap \bar{C})}{P(\bar{C})} = \frac{10}{20} = \frac{1}{2}$$

5. Consideremos os acontecimentos:

A: "ser aprovado"

B: "ser muito fluente no idioma"

De acordo com o enunciado, tem-se que P(B)=1%, $P(A\mid B)=90\%$ e $P(\bar{A}\mid \bar{B})=85\%$. Pretende-se calcular $P(B\mid \bar{A})$.

$$P(A \mid B) = 0.90 \Leftrightarrow \frac{P(A \cap B)}{P(B)} = 0.90 \Leftrightarrow P(A \cap B) = 0.90 \times 0.01 \Leftrightarrow P(A \cap B) = 0.009$$

$$P(\bar{A} \mid \bar{B}) = 85\% \Leftrightarrow \frac{P(A \cap \bar{B})}{P(\bar{B})} = 0.85 \Leftrightarrow P(\bar{A} \cap \bar{B}) = 0.85 \times 0.99 \Leftrightarrow P(\bar{A} \cap \bar{B}) = 0.8415$$

Colocando os dados numa tabela, obtém-se:

	A	Ā	Total
В	0,009	0,01 - 0,009 = 0,001	0,01
\overline{B}	0,99 - 0,8415 = 0,1485	0,8415	1 - 0,01 = 0,99
Total	0,1485 + 0,009 = 0,1575	0,8415 + 0,001 = 0,8425	1

$$P(B \mid A) = \frac{P(B \cap A)}{P(A)} = \frac{0,009}{0,1575} \approx 5,71\%$$

6.
$$\mu=50~000$$
 e $\sigma=4000$ $X{\sim}N(50~000,4000)$ $\mu+2\sigma=50~000+2\times4000=58~000$ $P(X>\mu+2\sigma)=P(X>58~000)=2,3\%$ Opção (B)