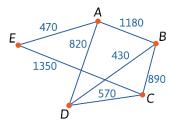

Teste 2

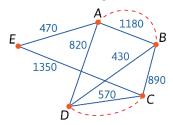
pág. 80

1.1 Considerando os tempos necessários à concretização de cada uma das tarefas e às suas precedências, podemos traduzir os dados da tabela no grafo seguinte:


1.2 As possíveis sequências de tarefas são:

$T_1 \rightarrow T_2 \rightarrow T_3 \rightarrow T_4 \rightarrow T_5 \rightarrow T_{13} \rightarrow T_{15}$	150 minutos
$T_6 \rightarrow T_7 \rightarrow T_8 \rightarrow T_{11} \rightarrow T_{12} \rightarrow T_{15}$	100 minutos
$T_9 \to T_{10} \to T_{15}$	50 minutos
$T_{14} \to T_{15}$	35 minutos

1.3 Uma vez que o caminho crítico é formado pelas tarefas cuja realização demora 150 minutos, o que corresponde a 2 horas e meia, para o almoço ser servido às 14h00, a Maria João deve começar os preparativos às 11h30.


pág. 81

2.1 Um grafo ponderado que modela a situação descrita na tabela é, por exemplo, o que se encontra mais abaixo, no qual os vértices representam as cidades e as arestas as ligações ferroviárias entre elas.

2.2.1 O percurso pretendido pelo Rui não é possível, pois no grafo existem vértices de grau ímpar: vértices A, B, C e D.

Para satisfazer a pretensão do Rui, vamos eulerizar o grafo. Por exemplo:

2.2.2 Um percurso possível para o Rui pode ser, por exemplo, $A \to B \to C \to D \to A \to E \to C \to D \to B \to A$, com um comprimento total de:

$$1180 + 890 + 570 + 820 + 470 + 1350 + 570 + 430 + 1180 = 7460 \text{ km}$$

- 2.3 Por aplicação do algoritmo descrito, partindo de:
 - B, o percurso obtido é $B \to D \to C \to E \to A \to B$, com um comprimento total de:

$$430 + 570 + 1350 + 470 + 1180 = 4000 \text{ km}$$

• D, o percurso obtido é $D \rightarrow B \rightarrow C \rightarrow E \rightarrow A \rightarrow D$, com um comprimento total de:

$$430 + 890 + 1350 + 470 + 820 = 3960 \text{ km}$$

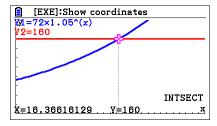
Assim, a sede deve situar-se na cidade D.

3.1 Opção (C)

$$790 + 1034,75 \times 0,09 \approx 883,13$$
 euros

3.2 Proposta A: $950 + 0.04A = 1000 \Leftrightarrow A = 1250$ euros

Proposta B: $790 + 0.09B = 1000 \Leftrightarrow B \approx 2333.33$ euros


3.3 Seja X o valor de vendas mensal para o qual as duas propostas são iguais.

$$950 + 0.04X = 790 + 0.09X \Leftrightarrow X = 3200$$

A partir de 3200 euros em vendas, a proposta B é mais vantajosa do que a proposta A.

pág. 82

- **4.1** N(0) = 72 centenas de habitantes, ou seja, 7200 habitantes
- **4.2** $N(10) = 72 \times 1.05^{10} \approx 117.28$ centenas de habitantes, ou seja, cerca de 11 728 habitantes
- 4.3 Recorrendo à calculadora gráfica, por exemplo:

Ao fim de 16,3661 anos, isto é, 16 anos e $0,3661 \times 12 = 4,3932$ meses. Será em maio de 2026.

5.1 Opção (B)

$$I(7) - I(0) = 810,74685 - 8 \approx 802$$
 alunos

- **5.2** De acordo com o modelo de evolução da propagação do vírus, sabemos que, à medida que o tempo passa, o número de alunos infetados vai se aproximar do número total de alunos do *campus*, logo este número é 3280 alunos.
- **5.3** $3280 \times 0.30 = 984$ alunos

Recorrendo à calculadora gráfica:

Podemos observar que terão de passar mais de 7 dias, para que o número de alunos infetados ultrapasse os 984. Assim, só no 8º dia é que este valor é ultrapassado.