Resoluções — Caderno de Exercícios

III. Introdução à inferência estatística

Capítulo 4 Introdução à inferência estatística

pág. 73

1.1

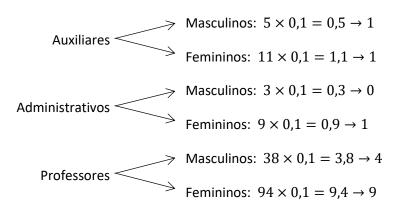
		8	9	
Auxiliares	16	5	11	
Administrativos	12	3	9	
Professores	132	38	94	
Total	160	46	114	

$$1.2\frac{46}{160} \times 100 = 28,75\%$$

$$1.3\frac{94}{132} \times 100 = 71,2\%$$

1.4.1 $160 \times 0.1 = 16 \rightarrow \text{número de elementos da amostra}$

1.4.2



Farão parte do painel: dois auxiliares, um de cada sexo, um funcionário administrativo do sexo feminino, quatro professores e nove professoras.

2.1 Parâmetro: altura média de um jovem de 17 anos

2.2 Estatística: 165 centímetros

3.1
$$\bar{x} = \frac{4+3,6+3,4+3,6+3,5+3,7+3,5+3,5}{8} = 3,6$$

3.2 $s \approx 0.173$ (valor obtido com a calculadora, modo estatístico)

4.1 $\mu = \frac{2+4+6+9}{4} = 5,25$ e $\sigma \approx 2,586$ (valor obtido através da calculadora em modo estatístico)

4.2 São $4^2 = 16$ amostras:

Amostras	\bar{X}	Amostras	$ar{X}$	Amostras	Χ	Amostras	$ar{X}$
(2, 2)	2	(4, 2)	3	(6, 2)	4	(9, 2)	5,5
(2, 4)	3	(4, 4)	4	(6, 4)	5	(9, 4)	6,5
(2, 6)	4	(4, 6)	5	(6, 6)	6	(9, 6)	7,5
(2, 9)	5,5	(4, 9)	6,5	(6, 9)	7,5	(9, 9)	9

4.3

x_i	2	3	4	5	5,5	6	6,5	7,5	9
$P(\bar{X}=x_i$	1	2	3	2	2	1	2	2	1
$F(X-X_i)$	16	16	16	16	16	16	16	16	16

4.4 $E(\bar{X}) = \frac{1}{16}(2+6+12+10+11+6+13+15+9) = 5,25$

4.5 Como $\mu = E(\bar{X})$, o estimador é não enviesado.

4.6 $\sigma \approx 1,829$ (valor obtido através da calculadora em modo estatístico)

pág. 74

5.1 São $4^3 = 64$ amostras:

Amostras	$ar{X}$	Amostras	\bar{X}	Amostras	\bar{X}	Amostras	$ar{X}$
(2, 2, 2)	2	(4, 2, 2)	8 - 3	(6, 2, 2)	10 3	(9, 2, 2)	$\frac{13}{3}$
(2, 2, 4)	8 - 3	(4, 4, 2)	$\frac{10}{3}$	(6, 2, 4)	4	(9, 2, 4)	5
(2, 2, 6)	$\frac{10}{3}$	(4, 2, 4)	$\frac{10}{3}$	(6, 4, 2)	4	(9, 4, 2)	5
(2, 2, 9)	13 3	(4, 4, 4)	4	(6, 2, 6)	14 3	(9, 2, 6)	$\frac{17}{3}$
(2, 4, 2)	8 - 3	(4, 2, 6)	4	(6, 6, 2)	14 3	(9, 6, 2)	17 3
(2, 6, 2)	<u>10</u> 3	(4, 6, 2)	4	(6, 2, 9)	17 3	(9, 9, 2)	<u>20</u> 3
(2, 9, 2)	13 3	(4, 2, 9)	5	(6, 9, 2)	17 3	(9, 2, 9)	<u>20</u> 3
(2, 4, 4)	10 3	(4, 9, 2)	5	(6, 4, 4)	<u>14</u> 3	(9, 4, 4)	17 3
(2, 6, 6)	14 3	(4, 6, 9)	19 3	(6, 4, 6)	16 3	(9, 4, 6)	19 3
(2, 9, 9)	20 3	(4, 9, 6)	19 3	(6, 6, 4)	16 3	(9, 6, 4)	19 3
(2, 4, 6)	4	(4, 4, 6)	14 3	(6, 4, 9)	19 3	(9, 4, 9)	22 3
(2, 6, 4)	4	(4, 6, 4)	14 3	(6, 9, 4)	19 3	(9, 9, 4)	$\frac{22}{3}$
(2, 4, 9)	5	(4, 4, 9)	17 3	(6, 6, 6)	6	(9, 6, 6)	7
(2, 9, 4)	5	(4, 9, 4)	17 3	(6, 6, 9)	7	(9, 6, 9)	8
(2, 6, 9)	17 3	(4, 6, 6)	16 3	(6, 9, 6)	7	(9, 9, 6)	8
(2, 9, 6)	17 3	(4, 9, 9)	<u>22</u> 3	(6, 9, 9)	8	(9, 9, 9)	9

5.2

<u></u>																
x_i	2	$\frac{8}{3}$	$\frac{10}{3}$	4	13 3	14 3	5	$\frac{16}{3}$	$\frac{17}{3}$	6	19 3	$\frac{20}{3}$	7	22 3	8	9
$P(\bar{X}=x_i$	$\frac{1}{64}$	$\frac{3}{64}$	$\frac{6}{64}$	$\frac{7}{64}$	$\frac{3}{64}$	$\frac{6}{64}$	6 64	$\frac{3}{64}$	9 64	$\frac{1}{64}$	6 64	$\frac{3}{64}$	$\frac{3}{64}$	$\frac{3}{64}$	$\frac{3}{64}$	$\frac{1}{64}$

5.3
$$E(\bar{X}) = \frac{2}{64} + \frac{8}{64} + \frac{20}{64} + \dots + \frac{24}{64} + \frac{9}{64} = 5,25$$

5.4 $\sigma \approx 1,493$ (valor obtido através da calculadora em modo estatístico)

5.5 O aumento da amostra provocou uma diminuição do erro padrão.

6.
$$E(\bar{X}) = \mu_{\overline{X}} = 65$$
 $\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}} \rightarrow \sigma_{\overline{X}} = \frac{14}{\sqrt{37}} \approx 2,302$

- **7.1** Uma vez que a dimensão da amostra é 45>30, o teorema do limite central diz-nos que, nestas condições, a distribuição de amostragem da média pode ser modelada por um modelo normal, com valor médio de 58,7 metros e desvio padrão igual a $\frac{5,03}{\sqrt{45}}\approx 0,7498$ metros (cerca de 75 centímetros).
- **7.2** Vimos que a distribuição de amostragem da média é modelada por um modelo normal de valor médio de 58,7 metros e desvio padrão de 0,75 metros. Pretendemos calcular $P(\bar{X} < 57,5)$. Seja $U \sim N(0,1)$. Então:

$$U = \frac{\bar{X} - 58,7}{0.75} \Leftrightarrow \bar{X} = 0.75U + 58,7$$

De onde:

$$\bar{X} < 57.5 \Leftrightarrow 0.75U + 58.5 < 57.5 \Leftrightarrow 0.75U < -1.2 \Leftrightarrow U < -1.6$$

Assim:

$$P(\bar{X} < 57.5) = P(U < -1.6) = P(U > 1.6) = 1 - P(U \le 1.6) = 1 - 0.9452 = 0.0548$$

A probabilidade de a média ser inferior a 57.5 metros é de 5.48%.

8.1 Como a dimensão da amostra é 64 > 30, o teorema do limite central garante que a distribuição de amostragem da média pode ser modelada por um modelo normal com valor médio de 600 e desvio padrão igual a $\frac{40}{\sqrt{64}} = 5$.

Seja
$$U \sim N(0,1)$$
, então: $U = \frac{\overline{X} - 600}{5} \Leftrightarrow 5U = \overline{X} - 600 \Leftrightarrow \overline{X} = 5U + 600$
 $P(\overline{X} > 609,8) = P(5U + 600 > 609,8) = P(U > 1,96) = 1 - P(U \le 1,96) = 1 - \Phi(1,96) = 1 - 0,9750 = 0,025 = 2,5\%$

8.2
$$\sigma = \frac{40}{\sqrt{100}} = 4$$
 $U = \frac{\bar{X} - 600}{4} \Leftrightarrow \bar{X} = 4U + 600$ $P(589,84 < \bar{X} < 610,16) = P(589,84 < 4U + 600 < 610,16) = P(-2,54 < U < 2,54) = 2 × $\Phi(2,54) - 1 = 0,989 = 98,9\%$$

8.3
$$\sigma = \frac{40}{\sqrt{400}} = \frac{40}{20} = 2$$

$$U = \frac{\bar{X} - 600}{2} \Leftrightarrow \bar{X} = 2U + 600$$

$$P(597,44 \le \bar{X} \le 602,56) = P(597,44 \le 2U + 600 \le 602,56) = P(-1,28 \le U \le 1,28) = 2 \times \Phi(1,28) - 1 = 2 \times 0,8997 - 1 = 0,7994 = 79,94\%$$

9.1 1 ano ≈ 52 semanas

$$E(\bar{X}) = 750$$
 bicicletas/semana $\sigma_{\overline{X}} = \frac{28}{\sqrt{52}} \approx 3,883$ bicicletas/semana

9.2.1
$$U = \frac{\bar{X} - 750}{3.883} \Leftrightarrow \bar{X} = 3.883U + 750$$

$$P(\bar{X} > 740) = P(3,883U + 750 > 740) = P(U > -2,58) = P(U \le 2,58) = 0,9951 = 99,51\%$$

9.2.2
$$P(745 \le \overline{X} \le 760) = P(-\frac{5}{3,883} \le U \le \frac{10}{3,883}) = P(-1,288 \le U \le 2,575) =$$

$$= \Phi(2,58) - 1 + \Phi(1,29) = 0.9951 - 1 + 0.9015 = 0.8966 = 89.66\%$$

9.3
$$\sigma = \frac{40}{\sqrt{100}} = 4$$
 $U = \frac{\bar{X} - 600}{4} \Leftrightarrow \bar{X} = 4U + 600$

$$P(|\bar{X} - \mu| \le 0.5) = P(|U| \le \frac{0.5}{3.883}) = P(|U| \le 0.13) = 2 \times \Phi(0.13) - 1 = 0.1034 = 10.34\%$$

pág. 75

10.
$$\bar{x} = 1.63$$
 $s = 0.2$

10.1 O intervalo de confiança para o valor médio μ é da forma:

$$\left] \bar{x} - z \times \frac{s}{\sqrt{n}}; \ \bar{x} + z \times \frac{s}{\sqrt{n}} \right[$$

No caso do intervalo de confiança de 90%, z = 1,645, de onde:

$$\left[1,63-1,645\times\frac{0,2}{\sqrt{150}};\ 1,63+1,645\times\frac{0,2}{\sqrt{150}}\right]=\left[1,60;\ 1,66\right]$$

- 10.2 A amplitude do intervalo aumentaria porque, à medida que o grau de confiança aumenta, a amplitude do intervalo também aumenta.
- **10.3** A amplitude do intervalo diminuiria porque, à medida que a dimensão da amostra aumenta, a amplitude do intervalo diminui.

11.
$$\hat{p} = \frac{800}{1000} = 0.8 \text{ e } n = 1000$$

O intervalo de confiança a 95% para a proporção é dado por

$$\left| 0.8 - 1.96 \times \sqrt{\frac{0.8(1 - 0.8)}{1000}}; \ 0.8 + 1.96 \times \sqrt{\frac{0.8(1 - 0.8)}{1000}} \right| =]0.775; 0.825[$$

O intervalo de confiança a 99% para a proporção é dado por

$$\left| 0.8 - 2.576 \times \sqrt{\frac{0.8(1 - 0.8)}{1000}}; \ 0.8 + 2.576 \times \sqrt{\frac{0.8(1 - 0.8)}{1000}} \right| =]0.767; 0.833[$$

$$\hat{p} = \frac{20}{50} = 0.4$$

O intervalo de 95% de confiança para a proporção é:

$$\left] 0.4 - 1.96 \times \sqrt{\frac{0.4(1 - 0.4)}{50}}; 0.4 + 1.96 \times \sqrt{\frac{0.4(1 - 0.4)}{50}} \right[=]0.26; 0.54[$$

13.
$$n = 200$$
 $\bar{x} = 25$ $s = 10$

13.1 Intervalo de confiança de 95% para μ :

$$\left]25 - 1,96 \times \frac{10}{\sqrt{200}}; \ 25 + 1,96 \times \frac{10}{\sqrt{200}} \right[=]23,61; 26,39[$$

13.2
$$\hat{p} = \frac{170}{200} = 0.85$$

Intervalo de confiança de 90% para a proporção:

$$\left| 0.85 - 1.645 \times \sqrt{\frac{0.85 \times 0.15}{200}}; \ 0.85 + 1.645 \times \sqrt{\frac{0.85 \times 0.15}{200}} \right| =]0.81; \ 0.89[$$

13.3 Com uma confiança de 90%, podemos dizer que a proporção de pessoas que faz compras no hipermercado varia entre os 81% e os 89%.

14.1 Proporção de alunos que pretendem candidatar-se.

14.2
$$\hat{p} = 80\%$$
 $n = 75$

Intervalo de confiança de 99% para a proporção:

$$\left| 0.8 - 2.576 \times \sqrt{\frac{0.8 \times 0.2}{75}}; \ 0.8 + 2.576 \times \sqrt{\frac{0.8 \times 0.2}{75}} \right| =]0.68; \ 0.92[$$

14.3 Com uma confiança de 99%, podemos dizer que a proporção de alunos que pretendem candidatar-se varia entre os 68% e os 92%.

15.
$$\hat{p}=45\%$$
 $\varepsilon=2\%$ Grau de confiança: 95%

$$n = \left(\frac{1,96}{0.02}\right)^2 \times 0.45 \times (1 - 0.45) \approx 2377$$

pág. 76

16.
$$\sigma = 2$$
 $n = 60$ $\bar{x} = 97$

16.1 Intervalo de confiança de 90% para μ :

$$\left]97 - 1,645 \times \frac{2}{\sqrt{60}}; 97 + 1,645 \times \frac{2}{\sqrt{60}}\right[=]96,58; 97,42[$$

A marca de bebida deve ser processada porque, com uma confiança de 90%, podemos dizer que a média da capacidade de cada garrafa varia entre 96,58 e 97,42 centilitros.

16.2
$$\varepsilon = 0.02$$
 Grau de confiança: 95%

$$n = \left(\frac{1,96 \times 2}{0,02}\right)^2 = 38\,416$$

17. Amplitude: 10

Logo, o erro será: $\varepsilon = 5$

Nível de confiança: 90%

$$\sigma = 15$$

$$n = \left(\frac{1,645 \times 15}{5}\right)^2 = 24,35$$

Devem ser estudados, pelo menos, 25 alunos.

18.
$$\sigma = 0.3$$
 $n = 35$ $\bar{x} = 4.8$

18.1 Intervalo de 99% de confiança para μ :

$$\left[4.8 - 2.576 \times \frac{0.3}{\sqrt{35}}; 4.8 + 2.576 \times \frac{0.3}{\sqrt{35}}\right] = \left[4.67; 4.93\right]$$

18.2
$$\sigma$$
 < 0,1 Grau de confiança: 95%

$$n = \left(\frac{1,96 \times 0,3}{0.1}\right)^2 = 34,57$$

O número de observações deverá ser, pelo menos, 35.

19.
$$\hat{p} = 0.85$$
 e $\varepsilon = 0.05$
$$n = \left(\frac{1.96}{0.05}\right)^2 \times 0.85 \times 0.15 = 195.9216$$

A dimensão da amostra deverá ser, pelo menos, 196.