1. No dia 11 de Outubro de 2009, realizaram-se, em Portugal, eleições autárquicas.

O território de um concelho constitui um único círculo eleitoral, para efeito de eleição dos órgãos autárquicos.

No círculo eleitoral de um dado concelho, concorreram à Câmara Municipal os partidos que constam na Tabela 1. Após o apuramento geral, os partidos concorrentes foram ordenados por número de votos obtidos, para se distribuírem os 7 mandatos correspondentes aos 7 vereadores a eleger.

Tabela 1

Partidos	Número de votos
A	7744
В	4918
С	1666
D	1572
E	308

A actual lei eleitoral prevê que a distribuição de mandatos seja feita, de forma proporcional, pelo método de Hondt.

Alguns movimentos partidários defendem que a distribuição de mandatos, para cada círculo eleitoral, deveria ser feita de forma directamente proporcional ao respectivo número de votos, com arredondamento às unidades. Por exemplo, ao partido B deveriam ser atribuídos B mandatos, uma

vez que
$$\frac{4918}{\text{número total de votos}} \times 7 \approx 2{,}124$$
 .

Verifique se os resultados deste concelho se modificariam com a aprovação da alteração à lei eleitoral proposta por esses movimentos partidários.

Na sua resposta, deve:

- distribuir os 7 mandatos destinados à vereação da Câmara Municipal do concelho pelos partidos constantes na tabela, utilizando o método de Hondt;
- distribuir os 7 mandatos destinados à vereação da Câmara Municipal do concelho pelos partidos constantes na tabela, de forma directamente proporcional ao respectivo número de votos;
- concluir a partir da comparação entre os dois resultados.

2. A Ana, a Berta, a Carla e a Daniela são as quatro herdeiras dos bens do senhor Francisco. Elas vão efectuar a partilha da herança deixada pelo senhor Francisco, herança essa constituída por um automóvel, um terreno e uma casa.

O método usado para a partilha é o seguinte:

- Primeira etapa: cada herdeira atribui um valor monetário a cada um dos bens da herança, colocando o
 registo dos valores das suas licitações dentro de um envelope fechado. No final, são abertos os
 envelopes e registados, numa tabela, os valores das licitações de todas as herdeiras;
- Segunda etapa: determina-se o valor global atribuído, por cada herdeira, à herança e o valor que cada herdeira considera justo receber, designado por porção justa. A porção justa obtém-se, para cada herdeira, através do quociente entre a soma das licitações atribuídas por essa herdeira e o número de herdeiras;
- Terceira etapa: cada bem é atribuído à herdeira que mais o valoriza, e considera-se que ela recebe o valor que atribui ao respectivo bem. Se uma herdeira não receber qualquer bem, considera-se, para efeitos de cálculo, que o «valor dos bens recebidos» por essa herdeira é zero;
- Quarta etapa: se o valor dos bens recebidos por uma herdeira for superior ou for inferior à porção justa por si determinada, então essa herdeira terá de pagar ou de receber a diferença, respectivamente;
- Quinta etapa (só é aplicada quando existe dinheiro em excesso): o excesso obtém-se subtraindo, do
 total do valor a pagar, o total do valor que as herdeiras têm a receber. Este excesso é dividido em
 partes iguais pelas herdeiras.

Na Tabela 2, encontram-se registados os valores monetários atribuídos, nas licitações secretas, por cada herdeira a cada um dos bens, o que corresponde à primeira etapa.

ANA BERTA CARLA **DANIELA** Automóvel €15 000 €18 000 €15 600 **€**16 500 Terreno €33 000 €20 000 €27 000 €30 000 Casa €117 000 €150 000 €120 000 €180 000

Tabela 2

Determine a partilha dos três bens, aplicando o método descrito, de forma que nenhuma herdeira possa ter razão para reclamar.

Na sua resposta, deve:

- calcular o valor global atribuído à herança por cada herdeira;
- determinar a porção justa de cada herdeira;
- atribuir os bens às herdeiras;
- apurar o valor a pagar ou a receber por cada herdeira;
- apurar o excesso, caso exista;
- dividir o excesso, caso exista, pelas herdeiras;
- indicar o valor total a receber por cada herdeira.

3. Num Serviço de Atendimento à Gripe (SAG), o número aproximado de casos confirmados de infecção pelo vírus H1N1, no dia t do mês de Agosto de 2009, é dado pelo modelo seguinte, com arredondamento às unidades.

$$A(t) = \frac{62,10}{1 + 25 \times e^{-0,797t}}$$

No mesmo SAG, o número aproximado de casos confirmados de infecção pelo vírus H1N1, no dia $\,t\,$ do mês de Setembro de 2009, é dado pelo modelo seguinte, com arredondamento às unidades.

$$S(t) = 62,11 + \ln(1,5+t)$$

Assim, por exemplo, o número aproximado, arredondado às unidades, de casos confirmados de infecção pelo vírus H1N1, no dia 3 de Agosto de 2009, é 19, pois $A(3)\approx18,88426$, e, no dia 4 de Setembro de 2009, é 64, pois $S(4)\approx63,81475$.

Nos três itens seguintes, pode recorrer à calculadora. Sempre que recorrer às capacidades gráficas da calculadora, apresente o(s) gráfico(s) obtido(s), bem como as coordenadas de pontos relevantes para a resolução do problema proposto (por exemplo, coordenadas de pontos de intersecção de gráficos, máximos, mínimos, etc.). Sempre que recorrer a uma tabela obtida na calculadora, apresente todas as linhas da tabela relevantes para a resolução do problema proposto.

- **3.1.** Determine o número aproximado, arredondado às unidades, de casos confirmados de infecção pelo vírus H1N1, no dia 18 de Setembro, utilizando o modelo S.
- **3.2.** A partir do modelo A, é possível afirmar que, num determinado dia do mês de Agosto, o número aproximado, com arredondamento às unidades, de casos confirmados de infecção pelo vírus H1N1 é 51.

Determine esse dia.

3.3. No mês de Agosto e no mês de Setembro, o número aproximado de casos confirmados de infecção pelo vírus H1N1, arredondado às unidades, apresenta-se seguindo modelos matemáticos diferentes.

Num pequeno texto, analise as representações gráficas dos modelos A e S.

Na sua resposta, deve:

- reproduzir os gráficos e descrever a forma como evoluiu o número aproximado de casos confirmados de infecção pelo vírus H1N1, em cada um dos meses referidos;
- apresentar as diferenças entre o número aproximado, arredondado às unidades, de casos confirmados de infecção pelo vírus H1N1 no início e no final de Agosto, e no início e no final de Setembro;
- comparar os resultados obtidos.

- 4. A empresa Silva-Filhos dedica-se à limpeza de estradas. A empresa está sediada no distrito de Viseu.
 - **4.1.** Na Figura 1, encontra-se o grafo que serve de modelo ao circuito utilizado pela empresa ao efectuar a limpeza das estradas.

Cada vértice do grafo representa uma localidade, e cada aresta representa uma estrada que liga duas localidades.



Figura 1

Considere a afirmação:

«Não é possível limpar todas as estradas representadas no grafo da Figura 1, percorrendo cada estrada uma e uma só vez, se o camião de limpeza partir de Beselga e regressar a Beselga. Mas, é possível alterar esta situação.»

Justifique a veracidade da afirmação anterior.

Reproduza o grafo da Figura 1, na folha de respostas, e acrescente-lhe uma aresta de modo que o grafo obtido represente um modelo a partir do qual seja possível limpar todas as estradas, percorrer cada estrada uma e uma só vez, partindo de Beselga e regressando a Beselga.

4.2. Considerando o conjunto das facturas da Silva-Filhos, o gerente da empresa afirma que o valor médio do valor de uma factura da empresa é de $\, \in \, 800$.

Para analisar a veracidade da afirmação, o contabilista da Silva-Filhos recolheu uma amostra aleatória de 500 facturas e verificou que a média da amostra é de 600 e que o desvio padrão amostral é de 6000.

Haverá razão para duvidar da afirmação do gerente da Silva-Filhos?

Justifique a sua resposta, construindo um intervalo de confiança de 99% para o valor médio do valor de uma factura da empresa Silva-Filhos.

Caso proceda a arredondamentos nos cálculos intermédios, conserve, no mínimo, quatro casas decimais.

Apresente os extremos do intervalo, com arredondamento às centésimas.

5. A Joana e a Maria, irmãs gémeas, são alunas da Escola Secundária de Mornas e frequentam a mesma turma.

O professor de Educação Física da turma das gémeas pediu aos alunos a elaboração de um trabalho sobre a prática de desporto.

A Joana é uma praticante de Voleibol, e a Maria é uma praticante de Ginástica Rítmica. Por isso, a Joana e a Maria optaram por questionar todos os alunos da Escola Secundária de Mornas sobre a aceitação das modalidades Voleibol e Ginástica Rítmica naquela escola.

O modelo de questionário utilizado para recolher os dados está representado na Figura 2.

Escola Secundária de Mornas Disciplina: Educação Física				
Qual é a tua modalidade desportiva preferida? Assinala-a com $ imes$ no \square				
Ginástica Rítmica				
Voleibol				
Outra (Indica-a:)				
Obrigado!				

Figura 2

As gémeas recolheram as respostas dos 632 alunos da escola, incluindo as delas próprias.

Todos os alunos responderam ao questionário e colocaram, pelo menos, um «×».

Ao contabilizar os resultados, a Joana contou 125 preferências para «Ginástica Rítmica», 156 para «Voleibol» e 474 para «Outra» e, ao somar estes valores, pensou que a contagem não estava certa.

A Maria resolveu verificar a contagem e respondeu:

«Está certo! Porque uns alunos colocaram dois "X", um na "Ginástica Rítmica" e outro no "Voleibol". Verifico, também, que os alunos que escolheram a opção "Outra" só colocaram um "X".»

5.1. Determine quantos alunos colocaram apenas um « × » na resposta ao questionário.

Sugestão: elabore um diagrama de Venn com os resultados apurados pelas gémeas.

5.2. Escolheu-se, ao acaso, um aluno da Escola Secundária de Mornas.

Calcule a probabilidade de o aluno escolhido preferir, pelo menos, uma das modalidades desportivas apresentadas, «Voleibol» ou «Ginástica Rítmica».

Apresente o resultado na forma de fracção irredutível.

5.3. Escolheu-se, ao acaso, um aluno da Escola Secundária de Mornas.

Calcule a probabilidade de o aluno escolhido preferir «Ginástica Rítmica», sabendo que não escolheu «Outra» quando respondeu ao questionário.

Apresente o resultado em percentagem, arredondado às centésimas.

5.4. Leia, atentamente, a informação:

«Num conjunto de dados, se adicionarmos uma constante $\,k\,$ ao valor de cada um dos dados, obtêm-se novos valores. A média dos novos valores é igual à soma da média dos dados originais com a constante $\,k\,$.»

Considere, agora, o problema:

Para a viagem de finalistas, a Joana, a Maria e o Henrique precisam que a média das quantias depositadas seja de $\,\epsilon\,1100$. A Joana, a Maria e o Henrique depositaram, numa instituição bancária, as suas poupanças, de $\,\epsilon\,720$, $\,\epsilon\,800$ e $\,\epsilon\,910$, respectivamente. Para conseguirem uma taxa de juro mais elevada, o pai do Henrique decidiu ajudá-los, aumentando o capital depositado por cada um dos três jovens, dando o mesmo valor a cada um.

Determine o valor que o pai do Henrique deve oferecer, a cada um dos jovens, para que a média das quantias depositadas se fixe em $\, \epsilon 1100 \, .$

Para resolver o problema, pode ser útil usar o conhecimento que consta da informação inicial.

FIM

Proposta de Resolução do Exame de Matemática Aplicada às Ciências Sociais Cód. 835 - 1ª Fase 2010

1. Para a eleição considerada, o quadro da distribuição de votos pelos partidos a partir do qual se apresentam os cálculos necessários (divisões por 1, 2, 3, ...) para atribuição de mandatos pelo método de Hondt

Partidos	A	В	С	D	E	Total de votantes
Votos	7744	4918	1666	1572	308	6208
dividir por						
1	7744.0	4918.0	1666.0	1572	308	
2	3872.0	2459.0	833.0	786		
3	2581.3	1639.3	555.3	524		
4	1936.0	1229.5	416.5	393		
5	1548.8	983.6				

Da aplicação do método Hondt resultam: 4 vereadores para o partido A, 2 vereadores para o partido B, 1 vereador para o partido C e nenhum para cada um dos restantes.

Pelo método alternativo que alguns movimentos políticos defendem , calcularam-se os mandatos de cada partido, assim:

Partidos	A	В	С	D	E
Cálculos	$\boxed{\frac{7744 \times 7}{16208} \simeq 3.3}$	$\frac{4918 \times 7}{16208} \simeq 2.1$	$\frac{1666 \times 7}{16208} \simeq .7$	$\frac{1572 \times 7}{16208} \simeq .7$	$\frac{308 \times 7}{16208} \simeq .1$
Vereadores	3	2	1	1	0

Se houvesse alteração à lei eleitoral, os partidos B e C manteriam os mandatos atribuídos pelo método de Hondt (2 e 1, respectivamente). O partido A perderia um mandato (passando de 4 para 3), enquanto que o partido D que pelo método de Hondt não tem qualquer lugar passaria a ter pelo novo método um vereador.

2. Completamos a tabela 2 do problema com os cálculos que permitem responder às questões postas:

	Ana	Berta	Carla	Daniela
Automóvel	15000	18000	15600	16500
Terreno	33000	20000	27000	30000
Casa	117000	150000	120000	180000
Valores globais	165000	188000	162600	226500
Porção justa	41250	47000	40650	56625
Bens atribuídos	Terreno	Automóvel	_	Casa
	33000	18000		180000

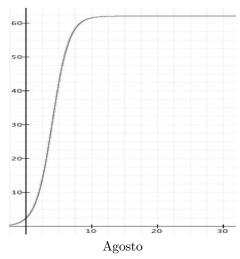
	Ana	Berta	Carla	Daniela
A receber:	8250	29000	40650	0
A pagar:	0	0	0	123375
Excesso	123	375-(8250+	29000 + 4065	50) = 45475
	$4^{\rm a}$ parte do excesso =11368,75			
Valor total a receber	52618,75	58368,75	52018,75	67993,75

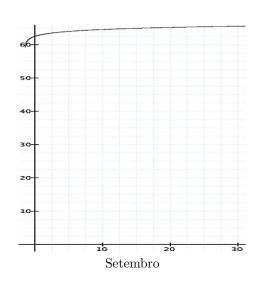
A herança ficará assim distribuída:

- a Ana fica com o terreno e €19618,75 em dinheiro
- a Berta fica com o automóvel e €11397,75 em dinheiro
- a Carla fica com €52018,75 em dinheiro
- a Daniela fica com a casa e paga €112006, 25

3. .

- 3.1. Em 18 de Setembro $t=18, S(18)=62, 11+ln(1,5+18)\simeq 65.080$ correspondente a 18 casos confirmados de infecção pelo vírus H1N1
- 3.2. Inserindo no editor de funções da calculadora o modelo

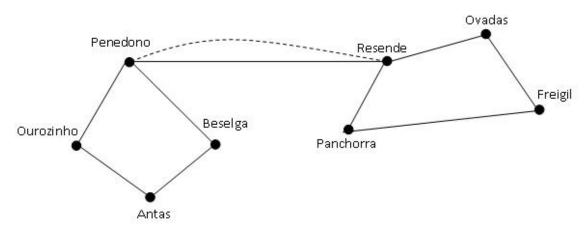

$$y = \frac{62.10}{1 + 25 \times e^{-.797x}}$$


obtém-se tabela

\boldsymbol{x}	y
5	42.395
6	51.344
7	56.743

de onde se pode concluir que esse dia foi 6 de Agosto de 2009.

3.3


Número de casos confirmados		
1de Agosto 31 de Agosto		
5	62	
1 de Setembro	30 de Setembro	
63	66	

Em Agosto verificou-se um aumento do número de casos de gripe muito mais acentuado que em Setembro, sobretudo nos primeiros nove dias. A partir daí observa-se uma estabilização do número de casos confirmados, tendência que se mantém durante o mês de Setembro em que se registaram apenas 3 novos casos.

4. .

4.1.

A afirmação é verdadeira uma vez que no grafo, que representa a situação, existem vértices com grau ímpar (Penedono e Resende). Assim, este grafo não admite circuitos de Euler, isto é, circuitos em que as arestas podem ser todas percorridas e sem repetição, iniciando e terminando num mesmo vértice. No entanto se admitirmos a duplicação da aresta que liga Penedono a Resende (a tracejado na figura), obtemos um novo grafo em que todos vértices têm grau par e será então possível encontrar circuitos de Euler a partir de qualquer dos vértices, em particular, a partir de Beselga.

4.2

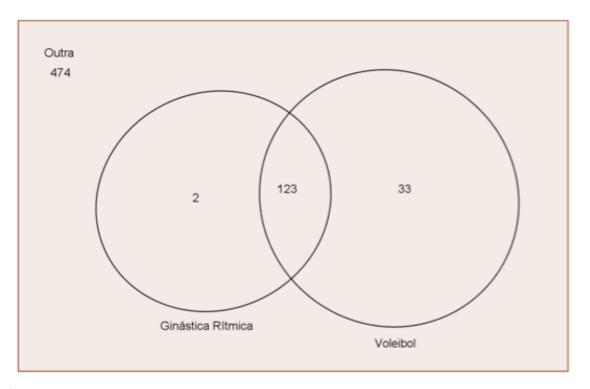
Da amostra do contabilista: $n = 500, \overline{x} = 830, s = 220$

O intervalo de confiança é dado por

$$\left] \overline{x} - z \times \frac{s}{\sqrt{n}}, \overline{x} + z \times \frac{s}{\sqrt{n}} \right[$$

e na situação particular do problema é

$$\left[830 - 2,576 \times \frac{220}{\sqrt{500}}, 830 + 2.576 \times \frac{220}{\sqrt{500}} \right[$$


ou seja

[804, 66; 855, 855, 34]

Há pois razões para duvidar da afirmação do gerente, já que €800 para valor médio de uma factura da empresa, por ele apontado, não pertence ao intervalo de confiança de 99%

5. .

5.1. Traduzindo a situação por um diagrama de Venn

É possível concluir que existem 123 alunos que escolheram Ginástica Rítmica e Voleibol, tendo os restantes 509 alunos (632-123) colocado apenas uma "X"

5.2. Casos Possíveis: 632 respostas

Casos Favoráveis: 2+123+33=158 (a partir do diagrama de Venn) A probabilidade pedida é dada por $\frac{158}{632}=\frac{1}{4}$

5.3. Representando por GR a preferência por "Ginástica Rítmica" e por \overline{O} a não preferência por "Outra", pretende-se determinar $P(GR|\overline{O})$

Considerando que existem 632-474=158 respostas correspondentes a \overline{O} , teremos

 $P(GR|\overline{O}) = \frac{125}{158}$, correspondendo a cerca de 79,11%

5.4. Média inicial das quantias depositadas pelos 3 jovens:

$$\frac{720 + 800 + 910}{3} = 810$$

A média das quantias depositadas terá que aumentar então

$$1100 - 810 = 290$$

Para que isso aconteça, pela propriedade da média enunciada na informação inicial, €290 será a quantia que o pai do Henrique deverá oferecer a cada jovem.