
- 1. No dia 14 de Dezembro de 1997, realizaram-se eleições autárquicas em Portugal.
 - 1.1. Num certo concelho, concorreram quatro partidos ás eleições para a Câmara Municipal. Estavam em disputa sete mandatos. Esses quatro partidos são aqui designados pelas letras A, B, C e D.

A distribuição dos votos pelos quatro partidos, nessas eleições de 1997, foi a seguinte.

Partidos	Α	В	С	D
Número de votos	13 442	8723	6 0 3 3	1 120

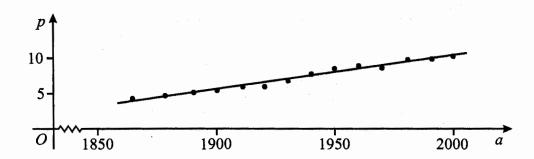
Houve 1258 votos brancos e nulos

Em 2001, realizaram-se novamente eleições para a mesma Câmara Municipal. Os partidos concorrentes foram os mesmos. Os resultados estão representados no seguinte gráfico de barras.

- 1.1.1. Elabore um gráfico de barras semelhante ao apresentado, mas relativo às eleições de 1997 para a mesma Câmara Municipal.
- 1.1.2. Nas eleições para uma Câmara Municipal, é eleito Presidente da Câmara o cabeça-de-lista da força política mais votada. Sabendo que o Presidente da Câmara, eleito em 1997, se recandidatou ao cargo em 2001, pelo mesmo partido, verifique, justificando, se ele foi, ou não, reeleito.
- 1.1.3. Nas eleições de 1997, a abstenção foi de 36%. Admita que, no dia a seguir às eleições, se escolheu uma pessoa, ao acaso, de entre os cidadãos do concelho que estavam inscritos nos cadernos eleitorais (para essas eleições). Determine a probabilidade de essa pessoa ter votado no partido A. Apresente o resultado na forma de percentagem, arredondado às unidades.

1.1.4. Na página da internet do STAPE (Secretariado Técnico dos Assuntos para o Processo Eleitoral), pode ler-se o seguinte: «Entre as características do método de Hondt, importa assinalar o encorajamento à formação de coligações, uma vez que o agrupamento de partidos os leva a conseguir um maior número de mandatos do que se concorressem isoladamente.»
Numa composição, comente esta frase, tendo por base os resultados das eleições de 1997, para a referida Câmara Municipal (tenha em atenção que, tal como já foi referido, estavam em disputa sete mandatos).

A sua composição deve contemplar os três pontos que a seguir se referem.


- Cálculo do número de mandatos obtidos por cada partido (de acordo com o método de Hondt).
- Simulação do que aconteceria se os partidos B e C tivessem concorrido em coligação (admitindo que o número de votos da coligação B+C seria a soma do número de votos do partido B com o número de votos do partido C e que os outros partidos mantinham a votação). Esta simulação deve incluir:
 - o cálculo do número de mandatos que seriam obtidos, nesse caso, por cada forca política;
 - uma referência a uma eventual alteração na Presidência da Câmara.
- Conclusão da vantagem, ou não, para os partidos B e C, da formação de uma coligação.
- 1.2. Num outro concelho, alguns dias antes das eleições, um jornal publicou uma sondagem, prevendo, para os dois partidos mais fortes desse concelho, aqui designados por X e Y, uma percentagem de votos de 39% e de 41%, respectivamente. Nas especificações técnicas, era referido que, em ambos os casos, a margem de erro era de 6%, e o nível de confiança de 95%.
 - 1.2.1. Admita que se diz que existe «empate técnico» quando a diferença entre as estimativas pontuais (para a percentagem de votos) é, em valor absoluto, inferior à margem de erro.
 Indique, justificando, se, de acordo com a referida sondagem, os dois partidos estavam, ou não, em situação de «empate técnico».
 - 1.2.2. Realizadas as eleições, verificou-se que o partido X saiu vencedor. Os leitores do jornal que publicou a referida sondagem reclamaram, dizendo que «não se pode acreditar em sondagens».
 O facto de o partido X ter saído vencedor, ao contrário dessa previsão, é motivo para se concluir que a sondagem estava mal feita? Justifique a sua resposta.
 - 1.2.3. Um outro jornal publicou também, alguns dias antes das eleições, uma outra sondagem, na qual se previa, para o partido X, a mesma percentagem, mas com uma margem de erro de 3%, para o mesmo nível de confiança. Alguém afirmou que, para esta sondagem ter conseguido uma margem de erro igual a metade da primeira, mantendo o nível de confiança, tinha sido necessário inquirir o dobro das pessoas. Tendo em conta a fórmula que permite obter um intervalo de confiança para uma proporção e a sua relação com a margem de erro, indique, justificando, se esta afirmação é verdadeira, ou se é falsa.

2. Na tabela seguinte, estão alguns dados sobre a população residente em Portugal, desde 1864 até ao final do século XX.

Ano (a)	População, em milhões (p)
1864	4,3
1878	4,7
1890	5,1
1900	5,4
1911	6,0
1920	6,0
1930	6,8
1940	7,8
1950	8,5
1960	8,9
1970	8,6
1981	9,8
1991	9,9
2000	10,3

Na figura abaixo está representado o diagrama de dispersão relativo aos dados apresentados na tabela, assim como a respectiva recta de regressão, cuja equação é

$$p = 0.0477 a - 84.95$$

- **2.1.** Com recurso à calculadora, determine o coeficiente de correlação linear das variáveis a e p, tendo em conta a tabela apresentada. Apresente o valor pedido na forma de dízima, arredondado às milésimas. Explique como procedeu e interprete esse valor, tendo em conta o diagrama de dispersão apresentado.
- **2.2.** Explique por que razão o modelo linear acima apresentado (recta de regressão) **não** pode ser adequado para:
 - estimar o número aproximado de habitantes, em Portugal, há alguns séculos (três ou mais);
 - prever a evolução da população portuguesa, a muito longo prazo (relacione uma tal previsão com os recursos, alimentares e outros, necessariamente limitados).

2.3. Num documento publicado pelo INE (Instituto Nacional de Estatística), em 12 de Junho de 2003, intitulado «*Projecções de População Residente em Portugal 2000-2050*», escreve-se:

«As projecções de População Residente em Portugal, no horizonte 2000-2050, revelam um envelhecimento continuado da população, consequência do previsível aumento de esperança de vida, bem como da manutenção dos níveis de fecundidade abaixo do limiar de substituição de gerações.

A possibilidade de se verificarem saldos migratórios positivos poderá atenuar esta tendência, mas não a evitará.»

Mais à frente, é afirmado que, no cenário mais plausível,

«(...) Portugal poderá esperar ainda um crescimento dos seus efectivos populacionais para cerca de 10 626 milhares em 2010, ano a partir do qual se verifica a inversão desta tendência, decrescendo até aos 9 302 milhares de indivíduos, em 2050 (...)»

Numa pequena composição, exponha alguns argumentos que permitam justificar a inadequação do modelo linear apresentado (recta de regressão) para fazer projecções sobre a evolução da população residente em Portugal, relativamente às próximas décadas, admitindo a fiabilidade das projecções do INE.

Na sua composição, deve:

- indicar, de acordo com o modelo linear apresentado, os efectivos populacionais previstos para os anos de 2010 e de 2050 e compará-los com as projecções do INE para esses anos;
- comparar o crescimento do modelo linear apresentado com a evolução prevista para a população portuguesa, nas projecções do INE, para a primeira metade do século XXI (crescimento até 2010 e decrescimento a partir desse ano);
- apresentar razões de ordem social que desaconselham a utilização do modelo linear para fazer projecções, para as próximas décadas, sobre a evolução da população residente em Portugal.

FIM

EXAME NACIONAL DO ENSINO SECUNDÁRIO

PROVA ESCRITA DE MATEMÁTICA APLICADA ÀS CIÊNCIAS SOCIAIS – 835 2ª Fase - 2006


Resolução

1.

1.1.

1.1.1. Em 1997, a distribuição dos votos e respectiva percentagem foi

	Partido	Partido	Partido	Partido	Brancos
	A	В	С	D	e nulos
Número de votos	13 442	8 723	6 033	1 120	1 258
Percentagem de votos	44	28,5	19,7	3,7	4,1

- 1.1.2. O Presidente da Câmara eleito em 1997 foi o cabeça-de-lista do partido A uma vez que este foi o mais votado nessa data. Como, em 2001, o mesmo partido manteve-se o mais votado (com uma percentagem de votos superior a 45%), o cabeça-de-lista do partido A foi reeleito Presidente da Câmara.
- 1.1.3. Se, em 1997, a abstenção foi de 36%, os votantes, que já sabemos serem num total de 30 576, correspondem a 64%; então, o número total de inscritos é de 47 775 ($\frac{30576}{0,64}$).

A probabilidade, de uma pessoa escolhida ao acaso, ter votado no partido A é $\frac{13442}{47775} \approx 28\%$

1.1.4. Comecemos por determinar a atribuição de mandatos para cada partido, em 1997.

	Α	В	С	D
Divisores	13442,0	8723,0	6033,0	1120,0
1	13442,0	8723,0	6033,0	1120,0
2	6721,0	4361,5	3016,5	560,0
3	4480,7	2907,7	2011,0	373,3
4	3360,5	2180,8	1508,3	280,0
5	2688,4	1744,6	1206,6	224,0
6	2240,3	1453,8	1005,5	186,7
7	1920,3	1246,1	861,9	160,0

O partido A obteve 4 mandatos, o B 2 e C 1.

Se os partidos B e C tivessem concorrido coligados, simulemos a distribuição de mandatos.

	Α	B+C	D
Divisores	13442,0	14756,0	1120,0
1	13442,0	14756,0	1120,0
2	6721,0	7378,0	560,0
3	4480,7	4918,7	373,3
4	3360,5	3689,0	280,0
5	2688,4	2951,2	224,0
6	2240,3	2459,3	186,7
7	1920,3	2108,0	160,0

Nesta simulação, o partido A ficaria com 3 mandatos – perderia um – e à coligação de B e C seriam atribuídos 4 mandatos – mais um do que se tivessem concorrido isoladamente. Claro que a presidência da câmara seria para a coligação por esta agora lhe ser atribuído o maior número de votos. A existência da coligação favoreceria os partidos que a constituiriam.

1.2.

1.2.1. De acordo com o esclarecimento dado nesta pergunta, os partidos X e Y estão em situação de "*empate técnico*" se a diferença entre as estimativas pontuais, em valor absoluto, for inferior à margem de

erro; como |41-39|=2% é menor do que 6% , estes dois partidos encontram-se em "empate técnico".

- 1.2.2. Não. O facto de o partido X ter saído vencedor de forma alguma significa que a sondagem estivesse mal feita. As estimativas das percentagens de votos para os partidos X e Y foram, respectivamente, 39% e 41% com uma margem de erro de 6%, querendo isto dizer que para um nível de confiança de 95%, é de esperar que o partido X tenha entre 33% e 45% e o partido Y entre 35% e 47%. Portanto, mesmo que entre o momento das sondagens e o dia das eleições os eleitores não tenham mudado de opinião, a percentagem de votos em X aproximou-se do extremo direito (45%) do intervalo de confiança e a percentagem de votos em Y do extremo esquerdo (35%), saindo este último vencido.
- 1.2.3. Na fórmula que permite obter o intervalo com nível de confiança 95% para a proporção de votantes no partido X, sendo 39% a estimativa dessa proporção, a margem de erro obtém-se usando a expressão

$$1,96\sqrt{\frac{0,39\times0,61}{n}} \quad .$$

Para a margem de erro ser de 6% (0,06), a dimensão da amostra será um número próximo de 250;

$$1,96\sqrt{\frac{0,39\times0,61}{250}}\approx0,06.$$

Se a margem de erro passar a metade da anterior, 0,03, mantendo o nível de confiança, a dimensão da amostra terá de passar a ser um número próximo de 1000. $1,96\sqrt{\frac{0,39\times0,61}{1000}}\approx0,03$. É falso dizer que teria sido necessário inquirir o dobro das pessoas; a dimensão da amostra quadruplicou.

2.

- 2.1. Introduzindo os valores das variáveis *a* e *p*, ano da recolha de dados e *p* número de portugueses, em milhões, residentes em Portugal em duas listas do modo estatístico da calculadora, e procurando a regressão linear entre as duas variáveis, o coeficiente de correlação é aproximadamente igual a 0,988.
 - O modelo linear construído, informa que o número de população residente em Portugal aumentou entre 1864 e 2000; os valores reais são *bem* interpretados pelos valores obtidos através do modelo linear apresentado, uma vez que os pontos do diagrama de dispersão estão próximos dos pontos da recta para os mesmos valores da variável *a*.
- 2.2. O modelo linear construído a partir dos dados é adequado para estimar o número de residentes em Portugal entre 1864 e 2000; claro que ainda é apropriado para obter valores aproximados dos portugueses residentes em Portugal em datas anteriores a 1864 e posteriores a 2000, mas terão de ser números não muito afastados destas duas últimas datas mencionadas. Se o afastamento a 1864 e a 2000 for acentuado, o modelo deixa de ser apropriado por não ter sido obtido a partir de dados em anos exteriores ao intervalo entre 1864 e 2000. Repare-se que em 1780, por exemplo, o número de residentes em Portugal já seria negativo,
 - p(1780) = -0.044; por outro lado, de acordo com o modelo linear a população cresceria sem limitações, o que não corresponde à realidade.
- 2.3. Comparem-se alguns números obtidos a partir do modelo linear, apresentado no enunciado da prova, com a previsão para a população portuguesa nas projecções do INE.

	População, em milhões (p)		
Ano (a)	a partir do modelo linear $p=0.0477a - 84.95$	projecções do INE	
2010	10,927	10,626	
2050	12,835	9,302	

Os valores obtidos através do modelo linear para a população residente em Portugal, em 2010, não se afastam das projecções apresentadas pelo INE. Ambos apontam para valores na ordem dos 10 milhões de habitantes; isto significa que, pelo menos, até 2010 se tem um modelo adequado para a evolução da população residente em Portugal. O mesmo já não se pode dizer para meados do século XXI; pelo modelo, uma vez que é linear, a população continuaria a aumentar, apresentando nessa data o valor de 12,835 milhões, enquanto que as previsões do INE apontam para uma diminuição da população motivada pelo actual envelhecimento da população e pelos níveis de fecundidade abaixo do limiar de substituição de gerações.